Calculation method of post-tensioned prestressed anchorage loss considering influence of asymmetric friction
-
摘要: 为改进后张预应力混凝土梁直线、曲线混合布束的预应力锚固损失计算方法,提高预应力锚固损失的理论计算精度,对预应力钢束微段建立静力平衡方程; 利用不同钢束形状间的变形协调关系和应力连续条件,考虑设计中预应力钢束直线、曲线混合分布的实际影响参数与正、反摩阻损失差异,建立了针对预应力混合布束锚固损失求解的分段逼近理论,推导了预应力锚固损失精确计算公式,并编制了Python程序,实现了自动求解与简化计算; 通过现场足尺模型试验比较了精确公式与现行公路和铁路桥梁设计规范中预应力锚固损失理论算法的计算误差。研究结果表明:后张预应力直线、曲线混合布束锚固时反摩阻效应小于张拉时的正摩阻效应,且实际中反摩阻影响长度与现行桥梁设计规范算法有较大偏差; 采用提出的方法推算的反摩阻影响范围总体与中国铁路桥梁设计规范更为接近,在精度和离散度方面比现行公路与铁路桥梁设计规范分别高出16.7%和14.9%,且与模型试验数据的相关度更高,变异性更小; 在后张预应力混凝土结构相关研究中应考虑实际预应力直线、曲线混合布束线形与不对称正、反摩阻效应的影响,采用分段逼近法计算钢束预应力锚固损失; 在进行后张预应力混凝土结构设计时,从简化计算的角度考虑,建议采用现行铁路桥梁设计规范计算反摩阻效应。Abstract: To improve the calculation method of prestressed anchorage loss of post-tensioned prestressed concrete beams with mixed straight lines and curves and enhance the theoretical calculation accuracy of the prestressed anchorage loss, an static equilibrium equation was established for the micro-segment of prestressed steel bundles. According to the deformation coordination relationship and stress continuity conditions between different steel bundle shapes, the actual influencing parameters of the mixed distribution of straight lines and curves of the prestressed steel bundles as well as the difference between the positive friction and anti-friction losses in design were considered. A piecewise approximation theory for calculating the anchorage loss of prestressed mixed bundles was established. The exact calculation formula of the prestressed anchorage loss was deduced, and a Python program was compiled to realize an automatic solution and simplified calculation. Through the field full-scale model test, the calculation errors of the exact formula and the theoretical algorithm for the prestressed anchorage loss in the current highway and railway bridge design codes were compared. Research results show that the anti-friction effect of post-tensioned prestressed bundles with mixed straight lines and curves for anchorage is smaller than the positive friction effect during the tensioning, and the actual anti-friction influence length greatly deviates from algorithms in the current bridge design codes. The anti-friction influence range calculated by the proposed method is generally closer to that in the Chinese railway bridge design code and is 16.7% and 14.9% higher than the current highway and railway bridge design codes in terms of accuracy and dispersion, respectively. Furthermore, it is highly correlated with the model test data, with small variability. In the related research on the post-tensioned prestressed concrete structures, the influences of the shape of actual prestressed mixed straight lines and curves, as well as the asymmetric positive friction and anti-friction effects, should be considered, and the piecewise approximation method should be used to calculate the prestressed anchorage loss of steel bundles. In the design of post-tensioned prestressed concrete structures, it is recommended to use the current railway bridge design code to calculate the anti-friction effect from the perspective of simplifying the calculation.
-
Key words:
- bridge engineering /
- post-tensioning method /
- prestressed box beam /
- prestress loss /
- friction loss /
- anti-friction
-
表 1 试验梁结构尺寸
Table 1. Sizes of test beam structure
cm 跨径 位置 顶板厚 腹板宽 底板厚 梁高 梁宽 中梁 边梁 2 000 端部 18 30 30 120 120+120 165+120 跨中 18 18 18 120 120+120 165+120 2 500 端部 18 30 30 140 120+120 165+120 跨中 18 18 18 140 120+120 165+120 3 000 端部 18 30 30 160 120+120 165+120 跨中 18 20 18 160 120+120 165+120 表 2 试验梁测试钢束位置
Table 2. Positions of steel bundles in test beam
20 m梁 25 m梁 30 m梁 N1左腹板束 N1左腹板束 N1左腹板束 N3右腹板束 N3右腹板束 N3右腹板束 N4左底板束 N4左腹板束 N5左底板束 表 3 预应力分布中各参数取值
Table 3. Parameter values in prestress distribution
试验梁跨径/m N1 N3 N4(N5) a/mm b/mm c/mm d/mm e/mm f/mm g/mm h/mm 20 8 625 1 175 19 600/2 5 425 4 375 19 600/2 9 800 19 600/2 25 9 874 2 426 24 600/2 6 453 5 847 24 600/2 12 300 24 600/2 30 12 080 2 720 29 600/2 9 223 5 577 29 600/2 14 800 29 600/2 30 12 080 2 720 29 600/2 9 223 5 577 29 600/2 14 800 29 600/2 表 4 实测梁端钢束锚固损失
Table 4. Measured anchorage losses of steel bundles in beam end
测试梁 钢束号 锚索测力计位置 张拉控制应力/MPa 锚固后应力/MPa 瞬时损失比/% 锚固变形钢束收缩/mm 20 m中梁 N1 左 1 337.86 1 139.29 14.84 7.5 右 1 208.75 1 013.29 16.17 7.4 N3 左 1 499.29 1 269.82 15.31 7.2 右 1 395.54 1 164.82 16.53 7.4 N4 左 1 336.14 1 099.14 17.74 8.5 右 1 276.86 1 039.14 18.62 8.1 25 m边梁 N1 左 1 356.07 1 187.50 12.43 8.2 右 1 264.29 1 065.89 15.69 8.4 N3 左 1 315.71 1 143.57 13.08 6.0 右 1 229.57 1 073.00 12.73 5.6 N5 左 1 232.71 1 098.14 10.92 4.6 右 1 131.71 1 024.86 9.44 4.4 30 m中梁 N1 左 1 285.43 1 110.14 13.64 8.3 右 1 204.57 1 102.86 8.44 8.1 N3 左 1 404.52 1 201.19 14.48 9.5 右 1 283.81 1 105.83 13.86 8.0 N5 左 1 251.57 1 077.86 13.88 6.5 右 1 311.00 1 128.86 13.89 6.5 30 m边梁 N1 左 1 421.31 1 284.40 9.63 6.4 右 1 427.50 1 277.74 10.49 6.5 N3 左 1 347.86 1 112.50 17.46 9.3 右 1 273.93 1 070.48 15.97 9.1 N5 左 1 335.57 1 186.29 11.18 6.8 右 1 290.71 1 164.00 9.82 6.4 表 5 实测梁内钢束锚固损失
Table 5. Measured anchorage losses of steel bundles inside beam
试验梁 测试阶段 磁通量测点编号 1# 2# 3# 4# 5# 20 m中梁 张拉阶段/MPa 1 250.54 1 420.00 1 396.43 1 310.00 1 271.00 锚固后/MPa 1 185.18 1 309.64 1 313.93 1 220.54 1 183.57 瞬时损失/% 5.23 7.77 5.91 6.83 6.88 25 m边梁 张拉阶段/MPa 1 263.39 1 260.71 1 185.57 1 227.00 1 156.86 锚固后/MPa 1 232.68 1 215.86 1 168.86 1 183.57 1 109.29 瞬时损失/% 2.43 3.56 1.41 3.54 4.11 30 m中梁 张拉阶段/MPa 1 216.29 1 340.36 1 321.67 1 312.38 1 222.14 锚固后/MPa 1 187.57 1 289.88 1 277.14 1 264.76 1 188.00 瞬时损失/% 2.36 3.77 3.37 3.63 2.79 30 m边梁 张拉阶段/MPa 1 349.88 1 289.29 1 268.45 1 251.19 1 236.86 锚固后/MPa 1 318.45 1 213.81 1 203.81 1 193.57 1 196.14 瞬时损失/% 2.33 5.85 5.10 4.61 3.29 表 6 反摩阻影响长度比较
Table 6. Comparison of anti-friction influence length
试验箱梁 1/2计算跨径/cm 钢束号 锚固点位置 反摩阻影响长度/cm 公路桥规 铁路桥规 本文算法 20 m中梁 980 N1 左端 1 258 1 408 >l/2 右端 1 315 1 448 >l/2 N3 左端 1 070 1 349 >l/2 右端 1 124 1 348 >l/2 N4 左端 1 530 1 575 >l/2 右端 1 451 1 573 >l/2 25 m边梁 1 230 N1 左端 1 334 1 439 >l/2 右端 1 398 1 610 >l/2 N3 左端 1 079 1 333 >l/2 右端 1 078 1 333 >l/2 N5 左端 1 163 1 245 >l/2 右端 1 187 1 231 >l/2 30 m中梁 1 480 N1 左端 1 420 1 706 1 140 右端 1 447 1 450 1 160 N3 左端 1 397 1 624 >l/2 右端 1 341 1 559 >l/2 N5 左端 1 389 1 423 >l/2 右端 1 357 1 391 >l/2 30 m边梁 1 480 N1 左端 1 184 1 325 980 右端 1 190 1 258 940 N3 左端 1 411 1 614 >l/2 右端 1 435 1 594 >l/2 N5 左端 1 375 1 409 >l/2 右端 1 357 1 391 >l/2 -
[1] 涂健, 赵体波, 雷俊卿. 预应力混凝土连续箱梁裂缝产生原因及预防措施研究[J]. 铁道建筑, 2021, 61(10): 35-39. https://www.cnki.com.cn/Article/CJFDTOTAL-TDJZ202110007.htmTU Jian, ZHAO Ti-bo, LEI Jun-qing. Study on causes and preventive measures of cracks in PC continuous box girder[J]. Railway Engineering, 2021, 61(10): 35-39. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TDJZ202110007.htm [2] VEREECKEN E, BOTTE W, LOMBAERT G, et al. Assessment of corroded prestressed and posttensioned concrete structures: a review[J]. Structural Concrete, 2021, 22(5): 2556-2580. doi: 10.1002/suco.202100050 [3] HE Zhi-qi, ZHUO Wei-ding, JIANG Ye-dong, et al. Transverse post-tensioning in long-span concrete box-girder bridges: refined modeling and alternative system[J]. Journal of Bridge Engineering, 2020, 25(3): 04020005. doi: 10.1061/(ASCE)BE.1943-5592.0001528 [4] 樊见维, 张峰, 高磊, 等. 预应力夹片锚钢筋回缩量概率分布模型[J]. 重庆交通大学学报(自然科学版), 2019, 38(3): 9-13, 74. doi: 10.3969/j.issn.1674-0696.2019.03.02FAN Jian-wei, ZHANG Feng, GAO Lei, et al. Rebar retraction probability distribution model of prestressed clip anchor[J]. Journal of Chongqing Jiaotong University (Natural Science), 2019, 38(3): 9-13, 74. (in Chinese) doi: 10.3969/j.issn.1674-0696.2019.03.02 [5] DENG Jun, RASHID K, LI Xiao-da, et al. Comparative study on prestress loss and flexural performance of rectangular and T beam strengthened by prestressing CFRP plate[J]. Composite Structures, 2021, 262: 113340. doi: 10.1016/j.compstruct.2020.113340 [6] YE Cong, BUTLER L J, ELSHAFIE M Z E B, et al. Evaluating prestress losses in a prestressed concrete girder railway bridge using distributed and discrete fibre optic sensors[J]. Construction and Building Materials, 2020, 247: 118518. doi: 10.1016/j.conbuildmat.2020.118518 [7] 贺拴海, 赵祥模, 马建, 等. 公路桥梁检测及评价技术综述[J]. 中国公路学报, 2017, 30(11): 63-80. doi: 10.3969/j.issn.1001-7372.2017.11.007HE Shuan-hai, ZHAO Xiang-mo, MA Jian, et al. Review of highway bridge inspection and condition assessment[J]. China Journal of Highway and Transport, 2017, 30(11): 63-80. (in Chinese) doi: 10.3969/j.issn.1001-7372.2017.11.007 [8] 韩智强, 周勇军, 赵洲, 等. 预应力混凝土简支梁桥锚下有效预应力分析[J]. 力学季刊, 2021, 42(2): 397-404. doi: 10.15959/j.cnki.0254-0053.2021.02.019HAN Zhi-qiang, ZHOU Yong-jun, ZHAO Zhou, et al. Research on anchorage effective prestress detection of prestressed concrete simply supported beam bridge[J]. Chinese Quarterly of Mechanics, 2021, 42(2): 397-404. (in Chinese) doi: 10.15959/j.cnki.0254-0053.2021.02.019 [9] 张利强, 张元海. 现行规范中后张梁锚固损失对比分析[J]. 兰州工业学院学报, 2021, 28(2): 32-38. doi: 10.3969/j.issn.1009-2269.2021.02.007ZHANG Li-qiang, ZHANG Yuan-hai. Comparison and analysis of anchorage losses of post-tensioned bridge in current code[J]. Journal of Lanzhou Institute of Technology, 2021, 28(2): 32-38. (in Chinese) doi: 10.3969/j.issn.1009-2269.2021.02.007 [10] GARBER D B, GALLARDO J M, DESCHENES D J, et al. Prestress loss calculations: another perspective[J]. PCI Journal, 2016, 61(3): 68-85. [11] CHOI J, WOODS C R, HRYNYK T D, et al. Behavior of curved post-tensioned concrete structures without through-thickness reinforcement[J]. ACI Structural Journal, 2017, 114(4): 983-994. [12] 魏志民, 张露露, 文鹏. 中俄规范混凝土结构钢筋预应力损失计算的对比分析[J]. 水运工程, 2022(7): 45-48, 54. https://www.cnki.com.cn/Article/CJFDTOTAL-SYGC202207007.htmWEI Zhi-min, ZHANG Lu-lu, WEN Peng. Comparative analysis on the calculation of prestress loss of reinforced concrete structure in Chinese and Russian codes[J]. Port and Waterway Engineering, 2022(7): 45-48, 54. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SYGC202207007.htm [13] GENDY A, RASHED M. Simplified computation of time dependent effects of segmental bridges[J]. International Journal of Bridge Engineering, 2018, 6(2): 85-107. [14] 李长雨. 弯桥预应力摩阻试验[J]. 辽宁工程技术大学学报(自然科学版), 2016, 35(6): 597-602. https://www.cnki.com.cn/Article/CJFDTOTAL-FXKY201606008.htmLI Chang-yu. Prestress friction test for curved bridge[J]. Journal of Liaoning Technical University (Natural Science), 2016, 35(6): 597-602. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-FXKY201606008.htm [15] 龚良勇, 王俊召. 预应力钢筋回缩引起的预应力损失简化计算研究[J]. 中外公路, 2019, 39(4): 102-107. https://www.cnki.com.cn/Article/CJFDTOTAL-GWGL201904020.htmGONG Liang-yong, WANG Jun-zhao. Study on simplified calculation of prestress loss caused by retraction of prestressed reinforcement[J]. Journal of China and Foreign Highway, 2019, 39(4): 102-107. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GWGL201904020.htm [16] 张开银, 张斌, 许灿. 预应力混凝土桥梁弯曲孔道摩阻预应力损失分析[J]. 公路工程, 2021, 47(3): 9-14. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGL202203002.htmZHANG Kai-yin, ZHANG Bin, XU Can. Analysis of prestress loss due to friction in curved ducts of prestressed concrete bridge[J]. Highway Engineering, 2021, 47(3): 9-14. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGL202203002.htm [17] SHI Hui-bin, GUO Qi. Study of simplified calculating model on friction correlated prestress loss for PC bridges[J]. IOP Conference Series: Earth and Environmental Science, 2020, 510(5): 052066. [18] GUO Qi. Iterative prediction on friction loss parameters of prestress tendon[J]. Applied Mechanics and Materials, 2014, 501-504: 1121-1124. [19] 伍彦斌, 黄方林. 后张法预应力筋锚固损失计算的虚拟张拉法[J]. 中外公路, 2020, 40(2): 82-87. https://www.cnki.com.cn/Article/CJFDTOTAL-GWGL202002018.htmWU Yan-bin, HUANG Fang-lin. Virtual tensioning method for calculating anchorage loss of post-tensioning prestress tendon[J]. Journal of China and Foreign Highway, 2020, 40(2): 82-87. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GWGL202002018.htm [20] 张元海, 郭臣东, 张玉元. 后张法预应力混凝土梁曲线钢束锚固损失的精确分析[J]. 中国公路学报, 2018, 31(1): 67-73, 90. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL201801009.htmZHANG Yuan-hai, GUO Chen-dong, ZHANG Yu-yuan. Exact analysis on anchorage loss of curved tendon in post-tensioned prestressed concrete beams[J]. China Journal of Highway and Transport, 2018, 31(1): 67-73, 90. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL201801009.htm [21] 张元海, 张睿, 王晨光, 等. 后张预应力混凝土梁钢束锚固损失研究[J]. 中南大学学报(自然科学版), 2018, 49(2): 478-484. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD201802029.htmZHANG Yuan-hai, ZHANG Rui, WANG Chen-guang, et al. Research on anchorage loss of tendon in post-tensioned prestressed concrete beams[J]. Journal of Central South University (Science and Technology), 2018, 49(2): 478-484. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD201802029.htm [22] 张元海, 张鹏飞, 杨霞林, 等. 现行铁路桥规中预应力钢筋锚固损失计算方法的改进[J]. 铁道学报, 2018, 40(4): 106-112. https://www.cnki.com.cn/Article/CJFDTOTAL-TDXB201804015.htmZHANG Yuan-hai, ZHANG Peng-fei, YANG Xia-lin, et al. Improvement on computing method for anchorage loss of prestressed tendon in current railway bridge code[J]. Journal of the China Railway Society, 2018, 40(4): 106-112. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TDXB201804015.htm [23] 张善稳, 王修信. 空间曲线预应力筋张拉阶段应力损失计算方法[J]. 长安大学学报(自然科学版), 2016, 36(5): 45-51. https://www.cnki.com.cn/Article/CJFDTOTAL-XAGL201605007.htmZHANG Shan-wen, WANG Xiu-xin. Calculation method of stress loss in tensioning stage for prestressing tendons of space curve[J]. Journal of Chang'an University (Natural Science Edition), 2016, 36(5): 45-51. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XAGL201605007.htm [24] 张善稳, 王修信. 非对称布置预应力筋理论不动点计算方法[J]. 建筑技术, 2016, 47(4): 324-327. https://www.cnki.com.cn/Article/CJFDTOTAL-JZJI201604010.htmZHANG Shan-wen, WANG Xiu-xin. Calculation method of fixed point in theory under asymmetric arrangement of prestressing tendons[J]. Architecture Technology, 2016, 47(4): 324-327. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JZJI201604010.htm [25] KIM S H, PARK S Y, PARK Y, et al. Friction characteristics of post-tensioning tendons in full-scale structures[J]. Engineering Structures, 2019, 183: 389-397. [26] 余剑搏. 后张梁曲线预应力钢束预应力损失研究[D]. 兰州: 兰州交通大学, 2018.YU Jian-bo. Study on prestress loss of curved prestressing tendon in post-tensioned beam[D]. Lanzhou: Lanzhou Jiaotong University, 2018. (in Chinese) [27] YUAN Hao-yu, LI Yuan, ZHOU Bin, et al. Friction characteristics of post-tensioned tendons of full-scale structures based on site tests[J]. Advances in Civil Engineering, 2020, 2020: 5916738. [28] LI Han, LI Jun, XIN Yu, et al. Prestress force monitoring and quantification of precast segmental beams through neutral axis location identification[J]. Applied Sciences, 2022, 12(5): 2756. [29] SHEN Sheng, WANG Yao, MA Sheng-lan, et al. Evaluation of prestress loss distribution during pre-tensioning and post-tensioning using long-gauge fiber Bragg grating sensors[J]. Sensors, 2018, 18(12): 4106. [30] DOLATABAD Y A, MAGHSUDI A A. Monitoring and theoretical losses of post-tensioned indeterminate I-beams[J]. Magazine of Concrete Research, 2014, 66(22): 1129-1144. -