Effect of upper and lower arms diameters on aerodynamic uplift force of high-speed pantograph
Article Text (Baidu Translation)
-
摘要: 建立了7种不同直径上臂杆和7种不同直径下臂杆的受电弓模型,对受电弓进行空气动力学数值模拟计算,采用多体动力学方法计算了受电弓的气动抬升力,从气动力及流场特性的角度研究了受电弓上下臂杆直径对受电弓气动性能、气动抬升力的影响规律。研究结果表明:开口运行工况上臂杆气动升力和受电弓气动抬升力都随着上臂杆直径增加而增大,随着下臂杆直径增大而减小,但下臂杆直径对受电弓气动抬升力的影响较小;闭口运行工况上臂杆气动升力和受电弓气动抬升力都随着上臂杆直径增大而减小,随着下臂杆直径增加而增大;开闭口运行工况上臂杆主体杆件气动阻力仅为上臂杆气动阻力的3%~10%,气动升力为上臂杆气动升力的26%~55%,下臂杆主体杆件气动阻力为下臂杆气动阻力的10%~25%,气动升力为下臂杆气动升力的43%~68%,直径的改变对上下臂杆气动升力的影响较大,对气动阻力的影响较小;闭口运行工况上下臂杆气动阻力的绝对值都大于开口运行工况。Abstract: The pantograph models for the upper arms with seven different diameters and those for the lower arms with seven different diameters were built, and the aerodynamic numerical simulations of pantographs were carried out. The aerodynamic uplift forces of pantographs were calculated by using the multi-body dynamics method, and the effects of the upper and lower arm diameters on the aerodynamic performances and aerodynamic uplift forces of pantographs were studied from the perspective of the aerodynamic force and flow field characteristics. Research results show that both the aerodynamic lift force of the upper arm and the aerodynamic uplift force of the pantograph are larger with the rise of the upper arm diameter and are smaller with the rise of the lower arm diameter under the knuckle-downstream operating conditions, but the effect of the lower arm diameter on the aerodynamic uplift force of the pantograph is small. Moreover, both the aerodynamic lift force of the upper arm and the aerodynamic uplift of the pantograph lessens with the increase of the upper arm diameter and raises with the increase of the lower arm diameter under the knuckle-upstream operating conditions. The aerodynamic resistance of the bar of the upper arm only accounts for 3%-10% of that of the upper arm, and the aerodynamic lift force accounts for 26%-55% of that of the upper arm under both the knuckle-downstream and knuckle-upstream operating conditions. The aerodynamic resistance of the bar of the lower arm accounts for 10%-25% of that of the lower arm, and the aerodynamic lift force accounts for 43%-68% of that of the lower arm under the two conditions. The change of diameter has a great influence on the aerodynamic lift forces of the upper and lower arms and a small effect on the aerodynamic resistances. In addition, the absolute values of the aerodynamic resistances of the upper and lower arms under the knuckle-upstream operating conditions are greater than those under the knuckle-downstream operating conditions. 16 figs, 31 refs.
-
Key words:
- vehicle engineering /
- high-speed pantograph /
- numerical simulation /
- aerodynamic uplift force /
- upper arm /
- lower arm
-
-
[1] GAO Guo-qiang, HAO Jing, WEI Wen-fu, et al. Dynamics of pantograph-catenary arc during the pantograph lowering process[J]. IEEE Transactions on Plasma Science, 2016, 44(99): 2715-2723. http://ieeexplore.ieee.org/iel7/27/7736515/07555344.pdf [2] 周宁, 张卫华. 基于直接积分法的弓网耦合系统动态性能仿真分析[J]. 中国铁道科学, 2008, 29(6): 71-76. doi: 10.3321/j.issn:1001-4632.2008.06.014ZHOU Ning, ZHANG Wei-hua. Dynamical performance simulation of the pantograph-catenary coupled system based on direct integration method[J]. China Railway Science, 2008, 29(6): 71-76. (in Chinese) doi: 10.3321/j.issn:1001-4632.2008.06.014 [3] 梅桂明, 张卫华. 受电弓/接触网系统动力学模型及特性[J]. 交通运输工程学报, 2002, 2(1): 20-25. doi: 10.3321/j.issn:1671-1637.2002.01.004MEI Gui-ming, ZHANG Wei-hua. Dynamics model and behavior of pantograph/catenary system[J]. Journal of Traffic and Transportation Engineering, 2002, 2(1): 20-25. (in Chinese) doi: 10.3321/j.issn:1671-1637.2002.01.004 [4] 李瑞平, 周宁, 吕青松, 等. 横风环境中弓网动力学性能分析[J]. 振动与冲击, 2014, 33(24): 39-44, 53. doi: 10.13465/j.cnki.jvs.2014.24.007LI Rui-ping, ZHOU Ning, LYU Qing-song, et al. Pantograph- catenary dynamic behavior under cross wind[J]. Journal of Vibration and Shock, 2014, 33(24): 39-44, 53. (in Chinese) doi: 10.13465/j.cnki.jvs.2014.24.007 [5] TOSHIAKI, MAKINO K, YOUSHIDA S, et al. Running test on current collector with contact force controller for high-speed railways[J]. JSME International Journal Series C. 1997, 40(4): 671-680. doi: 10.1299/jsmec.40.671 [6] COLLINA A, FCCHINETTI A, FOSSATI F, et al. Hardware in the loop test-rig for identification and control application on high speed pantographs[J]. Shock and Vibration, 2004, 11(3): 2171-2176. [7] 谢建, 刘志刚, 韩志伟, 等. 弓网耦合动力学模型仿真及接触网不平顺分析[J]. 电气化铁道, 2009, 20(6): 23-26, 29. doi: 10.3969/j.issn.1007-936X.2009.06.008XIE Jian, LIU Zhi-gang, HAN Zhi-wei, et al. Pantograph and overhead contact line coupling dynamic model simulation and analysis of imbalance of overhead contact line[J]. Electric Railway, 2009, 20(6): 23-26, 29. (in Chinese) doi: 10.3969/j.issn.1007-936X.2009.06.008 [8] 吴燕, 吴俊勇, 郑积浩. 基于有限元和空气动力学模型的高速受电弓动态性能仿真[J]. 西南交通大学学报, 2009, 44(6): 855-859. doi: 10.3969/j.issn.0258-2724.2009.06.010WU Yan, WU Jun-yong, ZHENG Ji-hao. Simulation of high-speed pantograph dynamic performance based on finite element model and aerodynamic pantograph model[J]. Journal of Southwest Jiaotong University, 2009, 44(6): 855-859. (in Chinese) doi: 10.3969/j.issn.0258-2724.2009.06.010 [9] ZHOU Ning, ZHANG Wei-hua, LI Rui-ping. Dynamic performance of a pantograph catenary system with the consideration of the appearance characteristics of contact surfaces[J]. Journal of Zhejiang University—Science A: Applied Physics and Engineering, 2011, 12(12): 913-920. [10] LEE J H, KIM Y G, PAIK J S, et al. Performance evaluation and design optimization using differential evolutionary algorithm of the pantograph for the high-speed train[J]. Journal of Mechanical Scienceand Technology, 2012, 26(10): 3253-3260. doi: 10.1007/s12206-012-0833-5 [11] ZHANG Wei-hua, MEI Gui-ming, WU Xue-jie, et al. Hybrid simulation of dynamics for the pantograph-catenary system[J]. Vehicle System Dynamics, 2002, 38(6): 393-414. doi: 10.1076/vesd.38.6.393.8347 [12] COLLINA A, BRUNI S. Numerical simulation of pantograph-overhead equipment interaction[J]. Vehicle System Dynamics, 2002, 38(4): 261-291. doi: 10.1076/vesd.38.4.261.8286 [13] 田红旗. 中国列车空气动力学研究进展[J]. 交通运输工程学报, 2006, 6(1): 1-9. doi: 10.3321/j.issn:1671-1637.2006.01.001TIAN Hong-qi. Study evolvement of train aerodynamics in china[J]. Journal of Traffic and Transportation Engineering, 2006, 6(1): 1-9. (in Chinese) doi: 10.3321/j.issn:1671-1637.2006.01.001 [14] 李田, 戴志远, 刘加利, 等. 中国高速列车气动减阻优化综述[J]. 交通运输工程学报, 2021, 21(1): 59-80. doi: 10.19818/j.cnki.1671-1637.2021.01.003LI Tian, DAI Zhi-yuan, LIU Jia-li, et al. Review on aerodynamic drag reduction optimization of high-speed trains in China[J]. Journal of Traffic and Transportation Engineering, 2021, 21(1): 59-80. (in Chinese) doi: 10.19818/j.cnki.1671-1637.2021.01.003 [15] TIAN Hong-qi. Review of research on high-speed railway aerodynamics in China[J]. Transportation Safety and Environment, 2019, 1(1): 1-21. doi: 10.1093/tse/tdz014 [16] 姚拴宝, 郭迪龙, 杨国伟, 等. 高速列车气动阻力分布特性研究[J]. 铁道学报, 2012, 34(7): 18-23. doi: 10.3969/j.issn.1001-8360.2012.07.003YAO Shuan-bao, GUO Di-long, YANG Guo-wei, et al. Distribution of high-speed train aerodynamic drag[J]. Journal of the China Railway Society, 2012, 34(7): 18-23. (in Chinese) doi: 10.3969/j.issn.1001-8360.2012.07.003 [17] 郭迪龙, 姚拴宝, 刘晨辉, 等. 高速列车受电弓非定常气动特性研究[J]. 铁道学报, 2012, 34(11): 16-21. doi: 10.3969/j.issn.1001-8360.2012.11.003GUO Di-long, YAO Shuan-bao, LIU Chen-hui, et al. Unsteady aerodynamic characteristics of high-speed pantograph[J]. Journal of the China Railway Society, 2012, 34(11): 16-21. (in Chinese) doi: 10.3969/j.issn.1001-8360.2012.11.003 [18] YAO Shuan-bao, GUO Di-long, YANG Guo-wei. The influence of pantograph aerodynamic characteristics caused by its shroud[J]. Lecture Notes in Electrical Engineering, 2012, 148(1): 41-52. [19] 刘星, 邓见, 郑耀, 等. 高速列车受电弓空气动力学对弓网受流的影响[J]. 浙江大学学报(工学版), 2013, 47(3): 558-564. doi: 10.3785/j.issn.1008-973X.2013.03.024LIU Xing, DENG Jian, ZHENG Yao, et al. Impact of aerodynamics of pantograph of a high-speed train on pantograph-catenary current collection[J]. Journal of Zhejiang University (Engineering Science), 2013, 47(3): 558-564. (in Chinese) doi: 10.3785/j.issn.1008-973X.2013.03.024 [20] BOCCIOLONE M, RESTA F, ROCCHI D, et al. Pantograph aerodynamic effects on the pantograph-catenary interaction[J]. Vehicle System Dynamics, 2006, 44(S1): 560-570. [21] POMBO J, AMBRÓSIO J, PEREIRA M, et al. Influence of the aerodynamic forces on the pantograph-catenary system for high-speed trains[J]. Vehicle System Dynamics, 2009, 47(11): 1327-1347. doi: 10.1080/00423110802613402 [22] 付善强, 陈大伟, 梁建英, 等. 高速受电弓气动特性风洞试验研究[J]. 铁道机车车辆, 2013, 33(3): 123-126. doi: 10.3969/j.issn.1008-7842.2013.03.27FU Shan-qiang, CHEN Da-wei, LIANG Jian-ying, et al. Investigation on wind tunnel tests of the aerodynamic characteristics of high-speed pantograph[J]. Railway Locomotive and Car, 2013, 33(3): 123-126. (in Chinese) doi: 10.3969/j.issn.1008-7842.2013.03.27 [23] 李瑞平, 周宁, 张卫华, 等. 高速列车过隧道对弓网动力学影响分析[J]. 振动与冲击, 2013, 32(6): 33-37. doi: 10.3969/j.issn.1000-3835.2013.06.007LI Rui-ping, ZHOU Ning, ZHANG Wei-hua, et al. Influence of high-speed trains passing through tunnel on pantograph-catenary dynamic behaviors[J]. Journal of Vibration and Shock, 2013, 32(6): 33-37. (in Chinese) doi: 10.3969/j.issn.1000-3835.2013.06.007 [24] CARNEVALE M, FACCHINETTI A, MAGGIORI L, et al. Computational fluid dynamics as a means of assessing the influence of aerodynamic forces on the mean contact force acting on a pantograph[J]. Journal of Rail and Rapid Transit, 2016, 230(7): 733-738. [25] 宋洪磊, 吴俊勇, 吴燕, 等. 空气动力作用对高速受电弓受流特性影响研究[J]. 电气化铁道, 2010, 21(1): 28-32. doi: 10.3969/j.issn.1007-936X.2010.01.009SONG Hong-lei, WU Jun-yong, WU Yan, et al. Influence of aerodynamic to high speed pantograph current collection characteristics[J]. Electric Railway, 2010, 21(1): 28-32. (in Chinese) doi: 10.3969/j.issn.1007-936X.2010.01.009 [26] 杨桢. 基于空气动力学的受电弓高速受流研究[J]. 电气化铁道, 2009, 20(3): 17-20. doi: 10.3969/j.issn.1007-936X.2009.03.006YANG Zhen. Aerodynamics based study of pantograph high-speed current collection[J]. Electric Railway, 2009, 20(3): 17-20. (in Chinese) doi: 10.3969/j.issn.1007-936X.2009.03.006 [27] 李瑞平, 周宁, 张卫华, 等. 受电弓气动抬升力计算方法与分析[J]. 铁道学报, 2012, 34(8): 26-32. doi: 10.3969/j.issn.1001-8360.2012.08.005LI Rui-ping, ZHOU Ning, ZHANG Wei-hua, et al. Calculation and analysis of pantograph aerodynamic uplift force[J]. Journal of the China Railway Society, 2012, 34(8): 26-32. (in Chinese) doi: 10.3969/j.issn.1001-8360.2012.08.005 [28] HEMIDA H, KRAJNOVI AC'G S. Exploring flow structures around a simplified ICE2 train subjected to a 30° side wind using LES[J]. Engineering Applications of Computational Fluid Mechanics, 2009, 3(1): 28-41. doi: 10.1080/19942060.2009.11015252 [29] LI Tian, DAI Zhi-yuan, YU Meng-ge, et al. Numerical investigation on the aerodynamic resistances of double-unit trains with different gap lengths[J]. Engineering Applications of Computational Fluid Mechanics, 2021, 15(1): 549-560. doi: 10.1080/19942060.2021.1895321 [30] LI Tian, HEMIDA H, ZHANG Ji-ye. Comparisons of shear stress transport and detached eddy simulations of the flow around trains[J]. Journal of Fluids Engineering, 2018, 140(11): 1108-1112. [31] DAI Zhi-yuan, LI Tian, ZHANG Wei-hua, et al. Numerical study on aerodynamic performance of high-speed pantograph with double strips[J]. Fluid Dynamics and Materials Processing, 2020, 16(1): 31-40. doi: 10.32604/fdmp.2020.07661 -