留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

面向智能内河航运通信的无线信道测量与典型信道特征

李昌振 陈伟 王觉 常福星

李昌振, 陈伟, 王觉, 常福星. 面向智能内河航运通信的无线信道测量与典型信道特征[J]. 交通运输工程学报, 2022, 22(4): 322-333. doi: 10.19818/j.cnki.1671-1637.2022.04.025
引用本文: 李昌振, 陈伟, 王觉, 常福星. 面向智能内河航运通信的无线信道测量与典型信道特征[J]. 交通运输工程学报, 2022, 22(4): 322-333. doi: 10.19818/j.cnki.1671-1637.2022.04.025
LI Chang-zhen, CHEN Wei, WANG Jue, CHANG Fu-xing. Wireless channel measurement and typical channel characteristics for intelligent inland navigation communications[J]. Journal of Traffic and Transportation Engineering, 2022, 22(4): 322-333. doi: 10.19818/j.cnki.1671-1637.2022.04.025
Citation: LI Chang-zhen, CHEN Wei, WANG Jue, CHANG Fu-xing. Wireless channel measurement and typical channel characteristics for intelligent inland navigation communications[J]. Journal of Traffic and Transportation Engineering, 2022, 22(4): 322-333. doi: 10.19818/j.cnki.1671-1637.2022.04.025

面向智能内河航运通信的无线信道测量与典型信道特征

doi: 10.19818/j.cnki.1671-1637.2022.04.025
基金项目: 

国家自然科学基金项目 61701356

国家自然科学基金项目 52102399

长江海事局信息中心科技项目 20142h0157

详细信息
    作者简介:

    李昌振(1991-),男,山东济宁人,武汉理工大学副研究员,工学博士,从事无线信道测量与建模研究

    通讯作者:

    陈伟(1963-),男,湖北武汉人,武汉理工大学教授,工学博士

  • 中图分类号: U675.7

Wireless channel measurement and typical channel characteristics for intelligent inland navigation communications

Funds: 

National Natural Science Foundation of China 61701356

National Natural Science Foundation of China 52102399

Science and Technology Project of Information Center, Changjiang Maritime Safety Administration 20142h0157

More Information
Article Text (Baidu Translation)
  • 摘要: 为了明确新一代移动通信技术服务智能内河航运的作用机理,基于内河航运无线通信发展现状和通信环境特殊性,搭建了4G和5G临时无线通信网络,分别对以长江武汉段为例的典型内河通信场景开展了实际信道测量活动,以探寻内河航运无线通信特性的影响因素;利用高精度无线信道测量仪采集了信道传输函数、信号接收强度、时延等信道参数;基于无线传播理论和抽头延迟线模型,提取了传输路径损耗、功率时延分布、时延扩展、多普勒扩展等典型无线信道特征;基于信道典型特征参数,预测了4G和5G无线传播信号在内河场景下的有效覆盖范围及信号传输速率,探究了内河航运无线通信的多径来源和时延分布。测量和分析结果表明:内河航运无线通信中,桥梁、岸边建筑、过往大型船舶等均为无线传播信号多径效应的主要来源;桥梁可以造成最大18.0 dB的衍射损耗,岸边建筑和过往船舶遮挡会分别造成25.0、10.6 dB的能量衰减;4G无线通信的最大测量速率为95.32 Mb·s-1,而5G通信测量速率最高可达0.72 Gb·s-1;大型过往船舶还会造成均方根时延扩展增大约754.94 ns。可见,根据内河通信特殊环境构建合适的新一代移动通信专网,可以更好地为智能航运提供通信保障服务。

     

  • 图  1  4G核心网和高精度无线信道测量仪

    Figure  1.  4G core network and the high-precision wireless channel sounder

    图  2  长江武汉段下游4G信道测量路径

    Figure  2.  4G channel measurement route in lower reaches of Wuhan Section of Yangtze River

    图  3  长江武汉段上游4G信道测量路径

    Figure  3.  4G channel measurement route in upper reaches of Wuhan Section of Yangtze River

    图  4  5G信道测量路径

    Figure  4.  5G channel measurement route

    图  5  4G测量传输路径损耗结果

    Figure  5.  4G measured propagation path loss result

    图  6  5G测量传输路径损耗结果

    Figure  6.  5G measured propagation path loss result

    图  7  长江武汉段4G基站覆盖预测

    Figure  7.  Prediction of 4G base station coverage of Wuhan section of Yangtze River

    图  8  长江武汉段新增4G基站分布

    Figure  8.  Distribution of new 4G base stations at Wuhan Section of Yangtze River

    图  9  5G测量无线信号覆盖

    Figure  9.  Wireless signal coverage from 5G measurement

    图  10  功率时延分布测量结果

    Figure  10.  Measured result of power delay profile

    图  11  均方根时延扩展和均方根多普勒扩展

    Figure  11.  RMS delay spread and RMS Doppler spread

    图  12  均方根时延扩展和均方根多普勒扩展统计特性

    Figure  12.  Statistical characteristics of RMS delay spread and RMS Doppler spread

    表  1  现有海事信息传输方式的比较

    Table  1.   Comparison of current maritime information transmission methods

    传输方式 优点 缺点
    公共网络 宽带接入 覆盖限制、付费、信息安全性差
    HF/VHF 覆盖广、免费 窄带接入
    卫星通信 覆盖广、宽带接入 成本高、延迟大
    下载: 导出CSV

    表  2  测量参数

    Table  2.   Measurement parameters

    参数 4G测量 5G测量
    中心频率/GHz 1.457 5.900
    带宽/MHz 20 100
    发射功率/dBm 49.8 16.0
    发射天线增益/dBi 15 10
    接收天线增益/dBi 3.5 16.0
    发射天线高度/m 79.55 4.61
    接收天线高度/m 3.40 5.06
    下载: 导出CSV

    表  3  不同区域K

    Table  3.   K values in different regions

    区域 K
    大型城市 8.29[lg(1.54h2)]2-1.1 fc≤300 MHz
    3.2[lg(11.75h2)]2-4.97 fc>300 MHz
    中小型城市 [1.1lg(fc)-0.7]h2-[1.56lg(fc)-0.8]
    郊区 3.2[lg(11.75h2)]2-4.97+2[lg(fc/28)] 2+5.4
    农村 3.2[lg(11.75h2)]2-4.97+4.78[lg(fc)]2- 18.33lg(fc)+40.98
    下载: 导出CSV

    表  4  现有4G基站高度

    Table  4.   Heights of existing 4G base stations

    基站 高度/m
    测试基站 80
    基站1 50
    基站2 40
    基站3 40
    基站4 40
    基站5 20
    基站6 20
    下载: 导出CSV

    表  5  测量结果总结

    Table  5.   Summary of measurement results

    测量项目 4G测量 5G测量
    桥梁衍射损耗/dB 18 12
    建筑物衍射损耗/dB 25
    大型船舶遮挡损耗/dB 10.6
    无线信号传输速率/(Mb·s-1) 59.53 319.49
    下载: 导出CSV

    表  6  均方根时延扩展(τrms)和均方根多普勒扩展(drms)特性统计结果

    Table  6.   Characteristic statistical results of RMS delay spread (τrms) and RMS Doppler spread (drms)

    特性参数 视距 非视距
    τrms/ns drms/Hz τrms/ns drms/Hz
    10%累积 33.25 19.41 560.10 44.14
    50%累积 145.80 36.06 913.50 64.49
    90%累积 310.50 44.82 1 297.00 81.62
    均值 163.12 34.32 918.06 64.79
    标准差 117.04 9.48 294.96 16.59
    下载: 导出CSV
  • [1] 严新平, 刘佳仑, 范爱龙, 等. 智能船舶技术发展与趋势简述[J]. 船舶工程, 2020, 42(3): 15-20. https://www.cnki.com.cn/Article/CJFDTOTAL-CANB202003008.htm

    YAN Xin-ping, LIU Jia-lun, FAN Ai-long, et al. Brief introduction to the development and trend of intelligent ship technology[J]. Ship Engineering, 2020, 42(3): 15-20. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-CANB202003008.htm
    [2] 严新平. 自主水路交通系统的研究与展望[J]. 中国水运, 2020(7): 6-7. https://www.cnki.com.cn/Article/CJFDTOTAL-ZHOG202007003.htm

    YAN Xin-ping. Research and prospect of autonomous waterway transportation system[J]. China Water Transport, 2020(7): 6-7. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZHOG202007003.htm
    [3] 严新平, 张金奋, 吴兵. 交通强国战略下水运安全挑战与展望[J]. 长江技术经济, 2018, 2(3): 39-43. https://www.cnki.com.cn/Article/CJFDTOTAL-CJJJ201803007.htm

    YAN Xin-ping, ZHANG Jin-fen, WU Bing. Challenges and prospects of waterway shipment safety under the strategy of strength in transportation[J]. Technology and Economy of Changjiang, 2018, 2(3): 39-43. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-CJJJ201803007.htm
    [4] ERAS L E C, DA SILVA D K N, BARROS F B, et al. A radio propagation model for mixed paths in Amazon environments for the UHF band[J]. Wireless Communications and Mobile Computing, 2018, 2018: 2850830.
    [5] IMOIZE A L, OGUNFUWA T E. Propagation measurements of a 4G LTE network in Lagoon environment[J]. Nigerian Journal of Technological Development, 2019, 16(1): 1-9. doi: 10.4314/njtd.v16i1.1
    [6] LI C, YU J, CHEN W, et al. Shadowing correlation and a novel statistical model for Inland River radio channel[C]//IEEE. 2019 IEEE International Conference on Communications. New York: IEEE, 2019: 1-6.
    [7] YU J Y, CHEN W, YANG K, et al. Path loss channel model for inland river radio propagation at 1.4 GHz[J]. International Journal of Antennas and Propagation, 2017, 2017: 5853724.
    [8] YU J Y, CHEN W, LI F, et al. Channel measurement and modeling of the small-scale fading characteristics for urban inland river environment[J]. IEEE Transactions on Wireless Communications, 2020, 19(5): 3376-3389. doi: 10.1109/TWC.2020.2972885
    [9] LI C Z, YU J Y, CHEN W, et al. Measurement-based wireless channel analysis and modelling for shipping environments[J]. IET Microwaves, Antennas and Propagation, 2020, 14(8): 812-820. doi: 10.1049/iet-map.2019.1041
    [10] 孙丽萍. 探讨现代通信与信息技术在海事通信中的应用趋势[J]. 信息通信, 2014, 27(5): 209. https://www.cnki.com.cn/Article/CJFDTOTAL-HBYD201405146.htm

    SUN Li-ping. Discussion on the application trend of modern communication and information technology in maritime communication[J]. Information Communication, 2014, 27(5): 209. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HBYD201405146.htm
    [11] 夏明华, 朱又敏, 陈二虎, 等. 海洋通信的发展现状与时代挑战[J]. 中国科学: 信息科学, 2017, 47(6): 667-695. https://www.cnki.com.cn/Article/CJFDTOTAL-PZKX201706001.htm

    XIA Ming-hua, ZHU You-min, CHEN Er-hu, et al. The state of the art and challenges of marine communications[J]. Scientia Sinica(Informationis), 2017, 47(6): 667-695. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-PZKX201706001.htm
    [12] VALČIĆ S, MRAK Z, GULIĆ M. Analysis of advantages and disadvantages of existing maritime communication systems for data exchange[J]. Pomorstvo, 2016, 30(1): 28-37. doi: 10.31217/p.30.1.4
    [13] JO S W, SHIM W S. LTE-maritime: high-speed maritime wireless communication based on LTE technology[J]. IEEE Access, 2019, 7: 53172-53181. doi: 10.1109/ACCESS.2019.2912392
    [14] HUO Y M, DONG X D, BEATTY S. Cellular communications in ocean waves for maritime internet of things[J]. IEEE Internet of Things Journal, 2020, 7(10): 9965-9979.
    [15] LOPES M J, TEIXEIRA F, MAMEDE J B, et al. Wi-Fi broadband maritime communications using 5.8 GHz band[C]//IEEE. 2014 IEEE Underwater Communications and Networking. New York: IEEE, 2014: 1-5.
    [16] LI G, GUO S R, LYU J, et al. Introduction to global short message communication service of BeiDou-3 navigation satellite system[J]. Advances in Space Research, 2021, 67(5): 1701-1708.
    [17] WANG W, JOST T, RAULEFS R. A semi-deterministic path loss model for in-harbor LoS and NLoS environment[J]. IEEE Transactions on Antennas and Propagation, 2017, 65(12): 7399-7404.
    [18] 严忠贞, 严新平, 马枫, 等. 绿色长江航运智能化信息服务系统及其关键技术研究[J]. 交通信息与安全, 2010, 29(6): 76-81. https://www.cnki.com.cn/Article/CJFDTOTAL-JTJS201006023.htm

    YAN Zhong-zhen, YAN Xin-ping, MA Feng, et al. Green Yangtze river, intelligent shipping information system and its key technologies[J]. Journal of Transport Information and Safety, 2010, 29(6): 76-81. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JTJS201006023.htm
    [19] 严新平, 柳晨光. 智能航运系统的发展现状与趋势[J]. 智能系统学报, 2016, 11(6): 807-817. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNXT201606010.htm

    YAN Xin-ping, LIU Chen-guang. Review and prospect for intelligent waterway transportation system[J]. CAAI Transactions on Intelligent Systems, 2016, 11(6): 807-817. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZNXT201606010.htm
    [20] YU J Y, ZHANG B, CHEN W, et al. 4G TD-LTE radio coverage model optimization design under complex inland river environment[C]//IEEE. 2015 IEEE International Conference on Transportation Information and Safety. New York: IEEE, 2015: 442-446.
    [21] LI C Z, YU J Y, CHEN W, et al. Measurements and analysis of vehicular radio channels in the inland lake bridge area[J]. IET Microwaves, Antennas and Propagation, 2019, 13(9): 1394-1401.
    [22] 于俊逸. 内河场景下的无线信道测量与建模研究[D]. 武汉: 武汉理工大学, 2018.

    YU Jun-yi. Wireless channel measurements and channel modeling for inland river scenario[D]. Wuhan: Wuhan University of Technology, 2018. (in Chinese)
    [23] OKUMURA Y. Field strength and its variability in VHF and UHF land-mobile radio service[J]. Review of the Electrical Communication Laboratory, 1968, 16: 825-873.
    [24] HATA M. Empirical formula for propagation loss in land mobile radio services[J]. IEEE Transactions on Vehicular Technology, 1980, 29(3): 317-325.
    [25] ZHANG J K, LIU Y W, GU Y L, et al. Large-scale test of 4G TD-LTE network[C]//ZHONG Zhi-cai. Proceedings of the 2012 International Conference on Information Engineering and Applications. Berlin: Springer, 2013: 121-128.
    [26] MOLISCH A F. Wireless Communications[M]. New York: John Wiley and Sons, 2012.
    [27] GOLDSMITH A. Wireless Communications[M]. Cambridge: Cambridge University Press, 2005.
    [28] FANG C, ALLEN B, LIU E, et al. Indoor-indoor and indoor-outdoor propagation trial results at 2.6 GHz[C]//IEEE. 2012 Loughborough Antennas and Propagation Conference. New York: IEEE, 2012: 1-4.
    [29] YANG K, ROSTE T, BEKKADAL F, et al. Experimental multipath delay profile of mobile radio channels over sea at 2 GHz[C]//IEEE. 2012 Loughborough Antennas and Propagation Conference. New York: IEEE, 2012: 1-4.
    [30] YU J Y, CHEN W, LI F, et al. Measurement-based V2V radio channel analysis and modelling for bridge scenarios at 5.9 GHz[J]. IET Communications, 2020, 14(3): 376-386.
  • 加载中
图(12) / 表(6)
计量
  • 文章访问数:  559
  • HTML全文浏览量:  294
  • PDF下载量:  81
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-02-16
  • 刊出日期:  2022-08-25

目录

    /

    返回文章
    返回