Wireless channel measurement and typical channel characteristics for intelligent inland navigation communications
-
摘要: 为了明确新一代移动通信技术服务智能内河航运的作用机理,基于内河航运无线通信发展现状和通信环境特殊性,搭建了4G和5G临时无线通信网络,分别对以长江武汉段为例的典型内河通信场景开展了实际信道测量活动,以探寻内河航运无线通信特性的影响因素;利用高精度无线信道测量仪采集了信道传输函数、信号接收强度、时延等信道参数;基于无线传播理论和抽头延迟线模型,提取了传输路径损耗、功率时延分布、时延扩展、多普勒扩展等典型无线信道特征;基于信道典型特征参数,预测了4G和5G无线传播信号在内河场景下的有效覆盖范围及信号传输速率,探究了内河航运无线通信的多径来源和时延分布。测量和分析结果表明:内河航运无线通信中,桥梁、岸边建筑、过往大型船舶等均为无线传播信号多径效应的主要来源;桥梁可以造成最大18.0 dB的衍射损耗,岸边建筑和过往船舶遮挡会分别造成25.0、10.6 dB的能量衰减;4G无线通信的最大测量速率为95.32 Mb·s-1,而5G通信测量速率最高可达0.72 Gb·s-1;大型过往船舶还会造成均方根时延扩展增大约754.94 ns。可见,根据内河通信特殊环境构建合适的新一代移动通信专网,可以更好地为智能航运提供通信保障服务。Abstract: In order to clarify the mechanism of the new generation mobile communication technology in serving intelligent inland navigation, the 4G and 5G temporary wireless communication networks were built based on the development status and special communication environment of wireless communication for inland navigation. With the Wuhan Section of the Yangtze River as an example, the channel measurement work was carried out in typical communication scenarios of inland rivers to explore the influence factors on the wireless communication characteristics of the inland navigations. The channel parameters, such as channel transmission function, received signal strength, and delay, were collected by a high-precision wireless channel sounder. The typical wireless channel characteristics, such as transmission path loss, power delay distribution, delay spread, and Doppler spread, were extracted based on the wireless propagation theory and a tap delay line model. Based on the typical channel characteristic parameters, the effective coverage ranges and transmission rates of 4G and 5G wireless signals in inland river scenarios were predicted, and the multi-path sources and delay distribution of wireless communication for inland navigation were explored. Measurement and analysis results show that bridges, shore buildings, and large passing vessels are the main sources of the multi-path effect of wireless transmission signals in wireless communication for inland navigation. The maximum diffraction loss caused by bridges can reach 18.0 dB. The power attenuations caused by the block of shore buildings and passing vessels can reach 25.0 and 10.6 dB, respectively. The transmission rate of the wireless signals shows that the maximum measurement rate of 4G wireless communication is 95.32 Mb·s-1, while that of 5G communication can reach 0.72 Gb·s-1. In addition, the root mean square delay spread will be increased by about 754.94 ns under the influence of large passing vessels. Therefore, a private wireless communication network should be constructed appropriately according to the special environment of inland river communication, so as to provide better communication support services for intelligent navigation.
-
表 1 现有海事信息传输方式的比较
Table 1. Comparison of current maritime information transmission methods
传输方式 优点 缺点 公共网络 宽带接入 覆盖限制、付费、信息安全性差 HF/VHF 覆盖广、免费 窄带接入 卫星通信 覆盖广、宽带接入 成本高、延迟大 表 2 测量参数
Table 2. Measurement parameters
参数 4G测量 5G测量 中心频率/GHz 1.457 5.900 带宽/MHz 20 100 发射功率/dBm 49.8 16.0 发射天线增益/dBi 15 10 接收天线增益/dBi 3.5 16.0 发射天线高度/m 79.55 4.61 接收天线高度/m 3.40 5.06 表 3 不同区域K值
Table 3. K values in different regions
区域 K值 大型城市 8.29[lg(1.54h2)]2-1.1 fc≤300 MHz
3.2[lg(11.75h2)]2-4.97 fc>300 MHz中小型城市 [1.1lg(fc)-0.7]h2-[1.56lg(fc)-0.8] 郊区 3.2[lg(11.75h2)]2-4.97+2[lg(fc/28)] 2+5.4 农村 3.2[lg(11.75h2)]2-4.97+4.78[lg(fc)]2- 18.33lg(fc)+40.98 表 4 现有4G基站高度
Table 4. Heights of existing 4G base stations
基站 高度/m 测试基站 80 基站1 50 基站2 40 基站3 40 基站4 40 基站5 20 基站6 20 表 5 测量结果总结
Table 5. Summary of measurement results
测量项目 4G测量 5G测量 桥梁衍射损耗/dB 18 12 建筑物衍射损耗/dB 25 大型船舶遮挡损耗/dB 10.6 无线信号传输速率/(Mb·s-1) 59.53 319.49 表 6 均方根时延扩展(τrms)和均方根多普勒扩展(drms)特性统计结果
Table 6. Characteristic statistical results of RMS delay spread (τrms) and RMS Doppler spread (drms)
特性参数 视距 非视距 τrms/ns drms/Hz τrms/ns drms/Hz 10%累积 33.25 19.41 560.10 44.14 50%累积 145.80 36.06 913.50 64.49 90%累积 310.50 44.82 1 297.00 81.62 均值 163.12 34.32 918.06 64.79 标准差 117.04 9.48 294.96 16.59 -
[1] 严新平, 刘佳仑, 范爱龙, 等. 智能船舶技术发展与趋势简述[J]. 船舶工程, 2020, 42(3): 15-20. https://www.cnki.com.cn/Article/CJFDTOTAL-CANB202003008.htmYAN Xin-ping, LIU Jia-lun, FAN Ai-long, et al. Brief introduction to the development and trend of intelligent ship technology[J]. Ship Engineering, 2020, 42(3): 15-20. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-CANB202003008.htm [2] 严新平. 自主水路交通系统的研究与展望[J]. 中国水运, 2020(7): 6-7. https://www.cnki.com.cn/Article/CJFDTOTAL-ZHOG202007003.htmYAN Xin-ping. Research and prospect of autonomous waterway transportation system[J]. China Water Transport, 2020(7): 6-7. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZHOG202007003.htm [3] 严新平, 张金奋, 吴兵. 交通强国战略下水运安全挑战与展望[J]. 长江技术经济, 2018, 2(3): 39-43. https://www.cnki.com.cn/Article/CJFDTOTAL-CJJJ201803007.htmYAN Xin-ping, ZHANG Jin-fen, WU Bing. Challenges and prospects of waterway shipment safety under the strategy of strength in transportation[J]. Technology and Economy of Changjiang, 2018, 2(3): 39-43. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-CJJJ201803007.htm [4] ERAS L E C, DA SILVA D K N, BARROS F B, et al. A radio propagation model for mixed paths in Amazon environments for the UHF band[J]. Wireless Communications and Mobile Computing, 2018, 2018: 2850830. [5] IMOIZE A L, OGUNFUWA T E. Propagation measurements of a 4G LTE network in Lagoon environment[J]. Nigerian Journal of Technological Development, 2019, 16(1): 1-9. doi: 10.4314/njtd.v16i1.1 [6] LI C, YU J, CHEN W, et al. Shadowing correlation and a novel statistical model for Inland River radio channel[C]//IEEE. 2019 IEEE International Conference on Communications. New York: IEEE, 2019: 1-6. [7] YU J Y, CHEN W, YANG K, et al. Path loss channel model for inland river radio propagation at 1.4 GHz[J]. International Journal of Antennas and Propagation, 2017, 2017: 5853724. [8] YU J Y, CHEN W, LI F, et al. Channel measurement and modeling of the small-scale fading characteristics for urban inland river environment[J]. IEEE Transactions on Wireless Communications, 2020, 19(5): 3376-3389. doi: 10.1109/TWC.2020.2972885 [9] LI C Z, YU J Y, CHEN W, et al. Measurement-based wireless channel analysis and modelling for shipping environments[J]. IET Microwaves, Antennas and Propagation, 2020, 14(8): 812-820. doi: 10.1049/iet-map.2019.1041 [10] 孙丽萍. 探讨现代通信与信息技术在海事通信中的应用趋势[J]. 信息通信, 2014, 27(5): 209. https://www.cnki.com.cn/Article/CJFDTOTAL-HBYD201405146.htmSUN Li-ping. Discussion on the application trend of modern communication and information technology in maritime communication[J]. Information Communication, 2014, 27(5): 209. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HBYD201405146.htm [11] 夏明华, 朱又敏, 陈二虎, 等. 海洋通信的发展现状与时代挑战[J]. 中国科学: 信息科学, 2017, 47(6): 667-695. https://www.cnki.com.cn/Article/CJFDTOTAL-PZKX201706001.htmXIA Ming-hua, ZHU You-min, CHEN Er-hu, et al. The state of the art and challenges of marine communications[J]. Scientia Sinica(Informationis), 2017, 47(6): 667-695. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-PZKX201706001.htm [12] VALČIĆ S, MRAK Z, GULIĆ M. Analysis of advantages and disadvantages of existing maritime communication systems for data exchange[J]. Pomorstvo, 2016, 30(1): 28-37. doi: 10.31217/p.30.1.4 [13] JO S W, SHIM W S. LTE-maritime: high-speed maritime wireless communication based on LTE technology[J]. IEEE Access, 2019, 7: 53172-53181. doi: 10.1109/ACCESS.2019.2912392 [14] HUO Y M, DONG X D, BEATTY S. Cellular communications in ocean waves for maritime internet of things[J]. IEEE Internet of Things Journal, 2020, 7(10): 9965-9979. [15] LOPES M J, TEIXEIRA F, MAMEDE J B, et al. Wi-Fi broadband maritime communications using 5.8 GHz band[C]//IEEE. 2014 IEEE Underwater Communications and Networking. New York: IEEE, 2014: 1-5. [16] LI G, GUO S R, LYU J, et al. Introduction to global short message communication service of BeiDou-3 navigation satellite system[J]. Advances in Space Research, 2021, 67(5): 1701-1708. [17] WANG W, JOST T, RAULEFS R. A semi-deterministic path loss model for in-harbor LoS and NLoS environment[J]. IEEE Transactions on Antennas and Propagation, 2017, 65(12): 7399-7404. [18] 严忠贞, 严新平, 马枫, 等. 绿色长江航运智能化信息服务系统及其关键技术研究[J]. 交通信息与安全, 2010, 29(6): 76-81. https://www.cnki.com.cn/Article/CJFDTOTAL-JTJS201006023.htmYAN Zhong-zhen, YAN Xin-ping, MA Feng, et al. Green Yangtze river, intelligent shipping information system and its key technologies[J]. Journal of Transport Information and Safety, 2010, 29(6): 76-81. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JTJS201006023.htm [19] 严新平, 柳晨光. 智能航运系统的发展现状与趋势[J]. 智能系统学报, 2016, 11(6): 807-817. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNXT201606010.htmYAN Xin-ping, LIU Chen-guang. Review and prospect for intelligent waterway transportation system[J]. CAAI Transactions on Intelligent Systems, 2016, 11(6): 807-817. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZNXT201606010.htm [20] YU J Y, ZHANG B, CHEN W, et al. 4G TD-LTE radio coverage model optimization design under complex inland river environment[C]//IEEE. 2015 IEEE International Conference on Transportation Information and Safety. New York: IEEE, 2015: 442-446. [21] LI C Z, YU J Y, CHEN W, et al. Measurements and analysis of vehicular radio channels in the inland lake bridge area[J]. IET Microwaves, Antennas and Propagation, 2019, 13(9): 1394-1401. [22] 于俊逸. 内河场景下的无线信道测量与建模研究[D]. 武汉: 武汉理工大学, 2018.YU Jun-yi. Wireless channel measurements and channel modeling for inland river scenario[D]. Wuhan: Wuhan University of Technology, 2018. (in Chinese) [23] OKUMURA Y. Field strength and its variability in VHF and UHF land-mobile radio service[J]. Review of the Electrical Communication Laboratory, 1968, 16: 825-873. [24] HATA M. Empirical formula for propagation loss in land mobile radio services[J]. IEEE Transactions on Vehicular Technology, 1980, 29(3): 317-325. [25] ZHANG J K, LIU Y W, GU Y L, et al. Large-scale test of 4G TD-LTE network[C]//ZHONG Zhi-cai. Proceedings of the 2012 International Conference on Information Engineering and Applications. Berlin: Springer, 2013: 121-128. [26] MOLISCH A F. Wireless Communications[M]. New York: John Wiley and Sons, 2012. [27] GOLDSMITH A. Wireless Communications[M]. Cambridge: Cambridge University Press, 2005. [28] FANG C, ALLEN B, LIU E, et al. Indoor-indoor and indoor-outdoor propagation trial results at 2.6 GHz[C]//IEEE. 2012 Loughborough Antennas and Propagation Conference. New York: IEEE, 2012: 1-4. [29] YANG K, ROSTE T, BEKKADAL F, et al. Experimental multipath delay profile of mobile radio channels over sea at 2 GHz[C]//IEEE. 2012 Loughborough Antennas and Propagation Conference. New York: IEEE, 2012: 1-4. [30] YU J Y, CHEN W, LI F, et al. Measurement-based V2V radio channel analysis and modelling for bridge scenarios at 5.9 GHz[J]. IET Communications, 2020, 14(3): 376-386. -