留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

陕西地区混凝土无伸缩缝桥梁的温度作用及其区划

刘永健 马志元 刘江 朱伟庆 王旭 李明辉

刘永健, 马志元, 刘江, 朱伟庆, 王旭, 李明辉. 陕西地区混凝土无伸缩缝桥梁的温度作用及其区划[J]. 交通运输工程学报, 2022, 22(5): 85-103. doi: 10.19818/j.cnki.1671-1637.2022.05.004
引用本文: 刘永健, 马志元, 刘江, 朱伟庆, 王旭, 李明辉. 陕西地区混凝土无伸缩缝桥梁的温度作用及其区划[J]. 交通运输工程学报, 2022, 22(5): 85-103. doi: 10.19818/j.cnki.1671-1637.2022.05.004
LIU Yong-jian, MA Zhi-yuan, LIU Jiang, ZHU Wei-qing, WANG Xu, LI Ming-hui. Temperature action and zoning of concrete jointless bridge in Shaanxi[J]. Journal of Traffic and Transportation Engineering, 2022, 22(5): 85-103. doi: 10.19818/j.cnki.1671-1637.2022.05.004
Citation: LIU Yong-jian, MA Zhi-yuan, LIU Jiang, ZHU Wei-qing, WANG Xu, LI Ming-hui. Temperature action and zoning of concrete jointless bridge in Shaanxi[J]. Journal of Traffic and Transportation Engineering, 2022, 22(5): 85-103. doi: 10.19818/j.cnki.1671-1637.2022.05.004

陕西地区混凝土无伸缩缝桥梁的温度作用及其区划

doi: 10.19818/j.cnki.1671-1637.2022.05.004
基金项目: 

国家自然科学基金项目 52108111

国家自然科学基金项目 51978061

青海省重点研发与转化计划 2021-SF-166

中央高校基本科研业务费专项资金项目 300102212102

详细信息
    作者简介:

    刘永健(1966-),男,江西玉山人,长安大学教授,工学博士,从事桥梁工程研究

    通讯作者:

    刘江(1991-),男,陕西西安人,长安大学讲师,工学博士

  • 中图分类号: U441.5

Temperature action and zoning of concrete jointless bridge in Shaanxi

Funds: 

National Natural Science Foundation of China 52108111

National Natural Science Foundation of China 51978061

Key Research and Development Program of Qinghai Province 2021-SF-166

Fundamental Research Funds for the Central Universities 300102212102

More Information
    Author Bio:

    LIU Yongjian (1966–), male, born in Yushan, Jiangxi Province, Professor at Chang'an University, PhD. He is engaged in research on bridge engineering. E-mail: liuyongjian@chd.edu.cn

    LIU Jiang (1991–), male, born in Xi'an, Shaanxi Province, Lecture at Chang'an University, PhD. E-mail: liu-jiang@chd.edu.cn

Article Text (Baidu Translation)
  • 摘要: 为研究混凝土无缝桥温度作用取值的地域差异性,对一整体式无缝桥开展了长期温度测试,基于实测数据验证有限元温度场模拟方法的准确性;调研陕西省及周边省份46个国家基准气象站1993~2015年气象数据,对其中缺失太阳辐射数据的站点进行了补充,并将气象站日值数据分解为逐时数据用于温度场分析;利用气象数据进行了23年长期温度场模拟,并基于新西兰规范温度梯度模式,进一步通过广义帕累托模型计算了有效温度和温度梯度作用具有50年重现期的代表值;采用空间插值方法绘制了温度作用等值线地图,并对等值线地图进行简化得到了温度作用分区地图;考虑不同梁高和铺装厚度参数对温度作用模式进行了修正,并最后给出一个分区地图的应用案例,计算了陕西各分区内整体桥的跨径总长限值。研究结果表明:陕西地区有效温度分区地图分布趋势与《公路桥涵设计通用规范》(JTG D60—2015)基本吻合,但关中和陕南部分地区取值较规范更为不利,而对于温度梯度顶部温差,陕北和陕南的大部分地区均超过规范统一取值14 ℃;在梁高小于1.4 m时,不存在新西兰规范温度梯度模式中的等温段,修正后的温度梯度模式能准确反映不同梁高下的温度分布规律;沥青铺装厚度仅对顶部温差影响较大,不同铺装厚度情况下的顶部温差可按线性插值进行修正;整体桥主梁纵向变形量随桥长线性增长,可在自由伸缩变形的基础上通过过引入纵向伸缩量折减系数进行简化计算;桥长可通过考虑升温时的桥台弯曲破坏和降温时的桩低周疲劳破坏进行控制,根据实际合龙温度计算;在提出的3种温度分区中,最优合龙温度下的理论桥长最大值分别为290、240和220 m。

     

  • 图  1  陕西省及其周边气象站点分布

    Figure  1.  Distribution of meteorological stations in Shaanxi Province and surrounding regions

    图  2  基于日极值的逐时气温模型

    Figure  2.  Hourly temperature model based on daily extreme values

    图  3  桥梁在太阳辐射下的热交换

    Figure  3.  Heat transfer of bridge under solar radiation

    图  4  马新庄桥总体布置与桥台构造(单位:cm)

    Figure  4.  General layout and abutment structure of Maxinzhuang Bridge (unit: cm)

    图  5  测点布置(单位: cm)

    Figure  5.  Arrangement of measure points (unit: cm)

    图  6  有限元模型

    Figure  6.  Finite element model

    图  7  温度模拟验证

    Figure  7.  Verification of temperature simulation

    图  8  温度场模拟方法验证

    Figure  8.  Verification of simulation method of temperature field

    图  9  分析模型截面(单位:cm)

    Figure  9.  Section of analysis model (unit: cm)

    图  10  新西兰规范的竖向温度梯度(单位:mm)

    Figure  10.  Vertical temperature gradient in New Zealand code (unit: mm)

    图  11  西安站历史气象数据

    Figure  11.  Historical meteorological data at Xi'an Station

    图  12  温度作用等值线地图

    Figure  12.  Isoline maps of temperature action

    图  13  陕西省温度作用分区地图

    Figure  13.  Zoning maps of temperature action in Shaanxi Province

    图  14  全国气候分区图

    Figure  14.  Climate zoning map of China

    图  15  考虑梁高的温度梯度模式的修正

    Figure  15.  Modification of temperature gradient model considering girder height

    图  16  温度梯度模式验证

    Figure  16.  Verification of temperature gradient modes

    图  17  考虑梁高的温差取值修正

    Figure  17.  Modification of temperature differences considering girder height

    图  18  铺装厚度对温度作用取值的影响

    Figure  18.  Influence of pavement thickness on values of temperature action

    图  19  整体桥纵向长度变化

    Figure  19.  Longitudinal length change of integral jointless bridge

    图  20  不同合龙温度下的桥长限值

    Figure  20.  Limit values of bridge length at different closure temperatures

    1.  Distribution of meteorological stations in Shaanxi Province and surrounding regions

    2.  Hourly temperature model based on daily extreme values

    3.  Heat transfer of bridge under solar radiation

    4.  General layout and abutment structure of Maxinzhuang bridge (unit: cm)

    5.  Arrangement of measuring points (unit: cm)

    6.  Finite element model

    7.  Verification of temperature simulation

    8.  Verification of simulation method of temperature field

    9.  Section of analysis model (unit: cm)

    10.  Vertical temperature gradient in New Zealand code (unit: mm)

    11.  Historical meteorological data at Xi'an station

    12.  Isoline maps of temperature action

    13.  Zoning maps of temperature action in Shaanxi Province

    14.  Climate zoning map of China

    15.  Modification of temperature gradient model considering girder height

    16.  Verification of temperature gradient model

    17.  Modification of temperature difference considering girder height

    18.  Influence of pavement thickness on values of temperature action

    19.  Longitudinal length change in integral jointless bridge

    20.  Limit value of bridge length under different closure temperatures

    表  1  材料热工参数

    Table  1.   Thermal parameters of materials

    特性 密度/(kg·m-3) 比热容/[J·(kg·℃)-1] 导热系数/[W·(m·℃)-1] 表面吸收率 辐射率
    桥面板混凝土 2 300 900 3.0 0.40 0.85
    沥青铺装 2 100 875 1.6 0.88 0.88
    下载: 导出CSV

    表  2  温度作用的广义帕累托分布参数与代表值

    Table  2.   Generalized Pareto distribution parameters and representative values of temperature action

    温度作用 广义帕累托分布模型参数 数据极值/℃ 代表值/℃
    类型 k σ u
    Te, max Ⅲ型分布 -0.242 1.633 35.273 40.13 40.65
    Te, min Ⅲ型分布 -0.350 2.111 3.161 -7.43 -7.59
    T1 Ⅲ型分布 -0.193 0.946 11.582 15.50 15.56
    T2 Ⅲ型分布 -0.102 0.332 1.890 5.20 5.51
    下载: 导出CSV

    表  3  陕西与周边地区的温度作用代表值

    Table  3.   Representative values of temperature action in Shaanxi and surrounding regions

    区域 站点信息 地理信息 温度作用/℃
    城市 区站号 纬度/(°) 经度/(°) 海拔/m Te, max Te, min Te, range T1 T2
    陕西省 榆林 53646 38.16 109.47 1 157 36.87 -21.52 58.39 16.26 6.29
    神木 53651 38.49 110.28 1 098 38.86 -19.19 58.04 16.88 6.90
    定边 53725 37.35 107.35 1 360 37.99 -21.62 59.61 16.44 6.95
    靖边 53735 37.37 108.48 1 337 36.81 -18.96 55.76 16.86 6.33
    吴旗 53738 36.55 108.10 1 331 34.72 -16.88 51.60 18.90 6.78
    横山 53740 37.56 109.14 1 111 37.97 -18.84 56.81 15.67 6.58
    绥德 53754 37.30 110.13 930 38.09 -17.02 55.11 15.89 6.56
    延安 53845 36.35 109.27 1 181 36.55 -15.04 51.58 17.22 6.66
    延长 53854 36.35 110.04 805 37.94 -15.33 53.27 15.63 6.88
    长武 53929 35.12 107.48 1 207 32.73 -18.82 51.55 12.51 5.90
    洛川 53942 35.46 109.25 1 156 34.34 -15.09 49.43 15.37 6.65
    蒲城 53948 34.57 109.35 499 38.98 -7.93 46.91 12.32 4.89
    韩城 53955 35.28 110.27 458 38.45 -9.68 48.13 12.66 6.04
    陇县 57003 34.54 106.50 924 36.47 -10.75 47.22 16.57 6.76
    凤翔 57025 34.31 107.23 781 36.64 -11.46 48.11 16.83 6.50
    太白 57028 34.02 107.19 1 544 30.78 -15.14 45.92 11.27 6.43
    永寿 57030 34.42 108.09 995 35.27 -10.47 45.74 13.15 4.99
    武功 57034 34.19 108.14 471 38.77 -7.52 46.29 12.99 6.61
    耀县 57037 34.56 108.59 710 36.60 -8.89 45.49 11.08 5.85
    秦都 57048 34.24 108.43 473 39.25 -11.01 50.27 12.71 6.65
    华县 57049 34.31 109.44 342 38.06 -8.66 46.72 13.47 6.49
    略阳 57106 33.19 106.09 794 34.95 -5.63 40.58 12.27 5.49
    留坝 57124 33.38 106.56 1 032 34.61 -8.13 42.74 11.36 6.31
    汉中 57127 33.04 107.02 510 38.34 -2.83 41.17 14.98 5.33
    泾河 57131 34.26 108.58 410 40.65 -7.59 48.24 15.56 5.51
    佛坪 57134 33.31 107.59 827 35.18 -5.62 40.81 12.45 4.85
    柞水 57140 33.40 109.07 818 36.92 -9.00 45.91 11.59 5.97
    商县 57143 33.52 109.58 742 36.71 -7.90 44.61 12.04 6.03
    镇安 57144 33.26 109.09 694 38.39 -5.21 43.61 15.49 5.89
    商南 57154 33.32 110.54 523 38.90 -5.83 44.74 18.94 6.64
    宁强 57211 32.50 106.15 836 35.29 -8.17 43.47 15.65 5.81
    石泉 57232 33.03 108.16 485 38.21 -3.19 41.40 16.45 5.57
    镇巴 57238 32.32 107.54 694 36.68 -4.49 41.16 13.76 5.12
    安康 57245 32.43 109.02 291 39.57 -2.00 41.57 15.80 5.47
    镇坪 57343 31.54 109.32 996 34.00 -7.11 41.11 14.10 6.70
    周边地区 甘肃环县 53821 36.34 107.18 1256 35.02 -17.13 52.15 18.81 6.70
    湖北房县 57259 32.02 110.46 427 38.90 -4.12 43.02 18.84 5.53
    内蒙鄂托克旗 53529 39.05 107.58 1 381 37.12 -20.56 57.68 16.98 5.94
    内蒙乌审召 53547 39.06 109.02 1 312 36.74 -20.96 57.70 16.10 6.04
    宁夏惠农 53519 39.13 106.46 1 093 37.92 -20.98 58.90 16.44 6.81
    宁夏吴忠 53612 37.59 106.11 1 129 37.89 -21.49 59.38 16.56 6.77
    山西吉县 53859 36.06 110.40 851 37.86 -15.29 53.15 15.68 6.89
    山西永济 57052 34.53 110.27 354 38.45 -9.91 48.36 13.21 6.02
    四川巴中 57313 31.52 106.46 418 36.21 -7.03 43.24 15.12 5.81
    四川达县 57328 31.12 107.30 345 36.01 -6.87 42.88 14.70 5.60
    重庆奉节 57348 31.01 109.32 300 34.11 -7.08 41.19 14.22 6.60
    下载: 导出CSV

    表  4  混凝土桥梁的有效温度

    Table  4.   Effective temperatures of concrete bridge

    有效温度 严寒地区 寒冷地区 温热地区
    Te, max/℃ 34 34 34
    Te, min/℃ -23 -10 -3 (0)
    Te, range/℃ 57 44 37 (34)
    下载: 导出CSV

    1.   Thermal parameters of materials

    2.   Generalized Pareto distribution parameters and representative values of temperature action

    3.   Representative values of temperature action in Shaanxi Province and surrounding regions

    4.   Effective temperatures of concrete bridge

  • [1] 刘永健, 刘江, 张宁. 桥梁结构日照温度作用研究综述[J]. 土木工程学报, 2019, 52(5): 59-78. doi: 10.15951/j.tmgcxb.2019.05.006

    LIU Yong-jian, LIU Jiang, ZHANG Ning. Review on solar thermal actions of bridge structures[J]. China Civil Engineering Journal, 2019, 52(5): 59-78. (in Chinese) doi: 10.15951/j.tmgcxb.2019.05.006
    [2] 许震, 陈宝春, 黄福云, 等. 无缝化改造的空心板桥受力性能[J]. 交通运输工程学报, 2018, 18(5): 66-76. doi: 10.3969/j.issn.1671-1637.2018.05.007

    XU Zhen, CHEN Bao-chun, HUANG Fu-yun, et al. Mechanical performance of jointless retrofitted bridge with hollow-slabs[J]. Journal of Traffic and Transportation Engineering, 2018, 18(5): 66-76. (in Chinese) doi: 10.3969/j.issn.1671-1637.2018.05.007
    [3] LIN Jian-hui, BRISEGHELLA B, XUE Jun-qing, et al. Temperature monitoring and response of deck-extension side-by-side box girder bridges[J]. Journal of Performance of Constructed Facilities, 2020, 34(2): 04019122. doi: 10.1061/(ASCE)CF.1943-5509.0001399
    [4] MARQUES LIMA J, DE BRITO J. Inspection survey of 150 expansion joints in road bridges[J]. Engineering Structures, 2009, 31(5): 1077-1084. doi: 10.1016/j.engstruct.2009.01.011
    [5] XU Zhen, CHEN Bao-chun, ZHUANG Yi-zhou, et al. Rehabilitation and retrofitting of a multispan simply-supported adjacent box girder bridge into a jointless and continuous structure[J]. Journal of Performance of Constructed Facilities, 2018, 32(1): 04017112. doi: 10.1061/(ASCE)CF.1943-5509.0001107
    [6] POTGIETER I C, GAMBLE W L. Response of highway bridges to nonlinear temperature distributions[R]. Urbana-Champaign: University of Illinois at Urbana-Champaign, 1983.
    [7] POTGIETER I C, GAMBLE W L. Nonlinear temperature distributions in bridges at different locations in the United States[J]. PCI Journal, 1989, 34(4): 80-103. doi: 10.15554/pcij.07011989.80.103
    [8] IMBSEN R A, VANDERSHAF D E, SCHAMBER R A, et al. Thermal effects in concrete bridge super structures[R]. Washington DC: National Research Council, 1985.
    [9] MIRAMBELL E, AGUADO A, MENDES P A, et al. Design temperature differences for concrete bridges[J]. Structural Engineering International, 1991, 1(3): 36-40. doi: 10.2749/101686691780617436
    [10] 刘江, 刘永健, 白永新, 等. 混凝土箱梁温度梯度模式的地域差异性及分区研究[J]. 中国公路学报, 2020, 33(3): 73-84. doi: 10.3969/j.issn.1001-7372.2020.03.007

    LIU Jiang, LIU Yong-jian, BAI Yong-xin, et al. Regional variation and zoning of temperature gradient pattern of concrete box girder[J]. China Journal of Highway and Transport, 2020, 33(3): 73-84. (in Chinese) doi: 10.3969/j.issn.1001-7372.2020.03.007
    [11] 刘江, 刘永健, 马志元, 等. 钢-混凝土组合梁桥的温度梯度作用(Ⅱ)——地域差异与等值线地图[J]. 中国公路学, 2022, https://kns.cnki.net/KCMS/detail/detail.aspx?filename=ZGGL20211208000&dbname=CJFD&dbcode=CJFQ.

    LIU Jiang, LIU Yong-jian, MA Zhi-yuan, et al. Temperature gradient action of steel-concrete composite girder bridge (Ⅱ) regional difference and isoline map[J]. China Journal of Highway and Transport, 2022, https://kns.cnki.net/KCMS/detail/detail.aspx?filename= ZGGL20211208000&dbname=CJFD&dbcode=CJFQ. (in Chinese)
    [12] 季德钧, 刘江, 张瑑芳, 等. 高原高寒地区钢-混凝土组合梁斜拉桥温度效应分析[J]. 建筑科学与工程学报, 2016, 33(1): 113-119. doi: 10.3969/j.issn.1673-2049.2016.01.016

    JI De-jun, LIU Jiang, ZHANG Zhuan-fang, et al. Temperature effect analysis of steel-concrete composite girder cable-stayed bridge in arctic-alpine region[J]. Journal of Architecture and Civil Engineering, 2016, 33(1): 113-119. (in Chinese) doi: 10.3969/j.issn.1673-2049.2016.01.016
    [13] PISARENKO V F, SORNETTE D. Characterization of the frequency of extreme earthquake events by the generalized Pareto distribution[J]. Pure and Applied Geophysics, 2003, 160(12): 2343-2364. doi: 10.1007/s00024-003-2397-x
    [14] HO D, LIU C H. Extreme thermal loadings in highway bridges[J]. Journal of Structural Engineering, 1989, 115(7): 1681-1696. doi: 10.1061/(ASCE)0733-9445(1989)115:7(1681)
    [15] 张青雯, 崔宁博, 冯禹, 等. 基于气象资料的日辐射模型在中国西北地区适用性评价[J]. 农业工程学报, 2018, 34(2): 189-196. https://www.cnki.com.cn/Article/CJFDTOTAL-NYGU201802026.htm

    ZHANG Qing-wen, CUI Ning-bo, FENG Yu, et al. Evaluation on applicability of daily solar radiation model in Northwest China based on meteorological data[J]. Transactions of the Chinese Society of Agricultural Engineering, 2018, 34(2): 189-196. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-NYGU201802026.htm
    [16] COLLARES-PEREIRA M, RABL A. The average distribution of solar radiation-correlations between diffuse and hemispherical and between daily and hourly insolation values[J]. Solar Energy, 1979, 22(2): 155-164. doi: 10.1016/0038-092X(79)90100-2
    [17] LIU B Y H, JORDAN R C. The interrelationship and characteristic distribution of direct, diffuse and total solar radiation[J]. Solar Energy, 1960, 4(3): 1-19. doi: 10.1016/0038-092X(60)90062-1
    [18] AU F T K, THAM L G, TONG M. Design thermal loading for steel bridges in Hong Kong[J]. Transactions Hong Kong Institution of Engineers, 2001, 8(2): 1-9.
    [19] 薛俊青, 林健辉, BRISEGHELLA B, 等. 适用于桥梁截面温度场计算的太阳辐射模型研究综述[J]. 福州大学学报(自然科学版), 2018, 46(4): 526-533. https://www.cnki.com.cn/Article/CJFDTOTAL-FZDZ201804011.htm

    XUE Jun-qing, LIN Jian-hui, BRISEGHELLA B, et al. A state-of-the-art of research on solar radiation model for calculation of temperature distribution of bridge cross section[J]. Journal of Fuzhou University (Natural Science Edition), 2018, 46(4): 526-533. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-FZDZ201804011.htm
    [20] 孙维刚, 陈永瑞, 刘来君, 等. 寒冷地区混凝土箱梁温度场研究[J]. 合肥工业大学学报(自然科学版), 2015, 38(7): 962-967. doi: 10.3969/j.issn.1003-5060.2015.07.019

    SUN Wei-gang, CHEN Yong-rui, LIU Lai-jun, et al. Study of temperature field of concrete box girder in cold area[J]. Journal of Hefei University of Technology(Natural Science), 2015, 38(7): 962-967. (in Chinese) doi: 10.3969/j.issn.1003-5060.2015.07.019
    [21] ABID S R, TAYŞI N, ÖZAKÇA M. Experimental analysis of temperature gradients in concrete box-girders[J]. Construction and Building Materials, 2016, 106: 523-532. doi: 10.1016/j.conbuildmat.2015.12.144
    [22] 刘江刘永健, 马志元, 等. 钢-混凝土组合梁桥的温度梯度作用: 作用模式与极值分析[J]. 中国公路学报, 2022, 35(9): 269-286. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL202209021.htm

    LIU Jiang, LIU Yong-jian, MA Zhi-yuan, et al. Temperature gradient action of steel-concrete composite girder bridge: action pattern and extreme value analysis[J]. China Journal of Highway and Transport, 2022, 35(9): 269-286. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL202209021.htm
    [23] 陈宝春, 王晨辉, 薛俊青, 等. 中国无伸缩缝桥梁调查与分析[J]. 建筑科学与工程学报, 2022, 39(5): 13-21. https://www.cnki.com.cn/Article/CJFDTOTAL-XBJG202205002.htm

    CHEN Bao-chun, WANG Chen-hui, XUE Jun-qing, et al. Investigation and analysis of jointless bridges in China[J]. Journal of Architecture and Civil Engineering, 2022, 39(5): 13-21. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XBJG202205002.htm
    [24] BRISEGHELLA B, 唐玉风, 薛俊青, 等无伸缩缝桥梁引板研究综述[J]. 福州大学学报(自然科学版), 2021, 49(2): 209-216. https://www.cnki.com.cn/Article/CJFDTOTAL-FZDZ202102011.htm

    BRISEGHELLA B, TANG Yu-feng, XUE Jun-qing, et al. Review of research on approach slabs in jointless bridges[J]. Journal of Fuzhou University (Natural Science Edition), 2021, 49(2): 209-216. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-FZDZ202102011.htm
    [25] LIN Jian-hui, BRISEGHELLA B, XUE Jun-qing, et al. Temperature monitoring and response of deck-extension side-by-side box girder bridges[J]. Journal of Performance of Constructed Facilities, 2020, 34(2): 04019122. doi: 10.1061/(ASCE)CF.1943-5509.0001399
    [26] 薛俊青, 陈宝春, 林健辉. 空心板延伸桥面板桥温度胀缩变形研究[J]. 桥梁建设, 2018, 48(2): 37-42. doi: 10.3969/j.issn.1003-4722.2018.02.007

    XUE Jun-qing, CHEN Bao-chun, LIN Jian-hui. Study of temperature expansion and contraction deformation of bridges with their deck slabs extended by hollow slabs[J]. Bridge Construction, 2018, 48(2): 37-42. doi: 10.3969/j.issn.1003-4722.2018.02.007
    [27] BRISEGHELLA B, 薛俊青, 兰成, 等. 整体式桥台桥梁极限长度[J]. 建筑科学与工程学报, 2014, 31(1): 104-110. doi: 10.3969/j.issn.1673-2049.2014.01.013

    BRISEGHELLA B, XUE Jun-qing, LAN Cheng, et al. Maximum length of integral abutment bridges[J]. Journal of Architecture and Civil Engineering, 2014, 31(1): 104-110. (in Chinese) doi: 10.3969/j.issn.1673-2049.2014.01.013
    [28] 程业, 潘旦光, 吴勇, 等. 混凝土箱梁支座位移实验及有效温度计算[J]. 工程力学, 2017, 34(9): 220-229. https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX201709026.htm

    CHENG Ye, PAN Dan-guang, WU Yong, et al. Support displacement test and effective temperature calculation of concrete box girder[J]. Engineering Mechanics, 2017, 34(9): 220-229. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX201709026.htm
    [29] LAFAVE J M, FAHNESTOCK L A, WRIGHT B A, et al. Integral abutment bridges under thermal loading: numerical simulations and parametric study[R]. Illinois: Illinois Center for Transportation, 2016.
    [30] DICLELI M, ALBHAISI S M. Estimation of length limits for integral bridges built on clay[J]. Journal of Bridge Engineering, 2004, 9(6): 572-581. doi: 10.1061/(ASCE)1084-0702(2004)9:6(572)
  • 加载中
图(40) / 表(8)
计量
  • 文章访问数:  803
  • HTML全文浏览量:  287
  • PDF下载量:  81
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-03-10
  • 刊出日期:  2022-10-25

目录

    /

    返回文章
    返回