Review on technical development of Melan method and Melan arch bridges
-
摘要:
回顾了美兰法100多年的发展历程,讨论了相关专业术语及其内涵与外延;调查分析了美兰拱桥在中国的应用现状,总结了美兰法的技术发展要点和历史经验;指出了美兰法技术与美兰拱结构的研究现状与发展方向。研究结果表明:美兰法在19世纪末和20世纪上半叶从欧美起源,20世纪下半叶传到中国和日本;按所采用的埋置拱架类型,其在中国的发展可分为半劲性拱架、(一般)钢管混凝土(CFST)拱架和强劲CFST拱架3个阶段;美兰拱桥为混凝土拱桥的一种,美兰法所用的埋置拱架以服务施工为主,成桥后对混凝土的增强作用为辅;截至2021年5月,收集到的中国已建成或在建的美兰拱桥有57座,2007年以来,跨径250 m以上的混凝土拱桥均采用此法修建,其中最大跨径为600 m;美兰拱桥主要应用在中国西南山区的公路桥梁中,近年在铁路桥中的应用增多,以上承式双肋组拼拱为主,矢跨比集中在1/4~1/6,拱轴线多采用悬链线;CFST拱架截面积在主拱截面中的占比、钢管直径、钢管和混凝土材料强度均随时间的推移和跨径的增大而不断提高;应用美兰法时要综合考虑有限的用钢量、受控的结构受力和简便的施工这3种因素;预埋拱架从最早的型钢向类桁式、箱式、桁式发展,目前以桁式为主,桁式钢管拱架多采用悬臂法架设,转体法也有应用且形式多样;为减少用钢量,并控制施工过程中结构的受力与变形,中国创新地引入了CFST桁式结构作为埋置拱架,并采用预压、辅助锚索、多点平衡浇筑、斜拉索等调载方法;近年来,通过采用强劲CFST拱架,外包混凝土横向分环浇筑工序减少至3环及以下;在美兰法应用方面,应以强劲CFST拱架为核心,继续开展材料、结构与施工技术方面的研究;在美兰拱结构方面,应加强钢管增强混凝土结构、超高性能材料、钢腹板(杆)-混凝土组合拱受力性能研究;同时,还应深入研究美兰拱桥的耐久性,从而为新建桥梁的设计和既有桥梁的维修养护服务。
Abstract:The development process of the Melan method for more than 100 years was reviewed, and the corresponding technical terms as well as their connotations and denotations were discussed. The application status of Melan arch bridges in China was investigated and analyzed, and the key technical issues and the development experience of the Melan method were summarized. The research status and development direction of the techniques employed in the Melan method and Melan arch structure were clarified. Research results show that the Melan method originated from Europe and America in the late 19th century and at the beginning of the 20th century, and then it was spread to China and Japan in the second half of the 20th century. Its development in China can be divided into three stages according to the types of embedded arch frameworks: semi-stiff arch framework, (general) concrete-filled steel tubular (CFST) arch framework, and strong CFST arch framework. The Melan arch bridge is a kind of concrete arch bridge. The embedded arch framework used by the Melan method is mainly for the construction, while its reinforcement effect on the concrete is auxiliary after the bridge is completed. A total of 57 Melan arch bridges were built or under construction in China by May 2021. All concrete arch bridges in China with a span of greater than 250 m are built with this method since 2007, of which the largest span is 600 m. The Melan arch bridge is mainly applied in highway bridges in mountainous areas of southwest China, and its application in railway bridges increases significantly in recent years. The deck bridges with braced twin ribs are mainly applied. The rise-to-span ratio is concentrated in the range of 1/4-1/6, and the catenary is widely used as the arch axis. The area ratio of cross-section of the embedded CFST arch to the cross-section of the main arch, the diameter of steel tube, and the strengths of steel tube and concrete materials increase with time and the rise in span. In the application of the Melan method, three factors should be comprehensively considered, namely, the limited steel consumption, controlled mechanical behavior of the structure, and simple construction. The embedded arch framework developes from the earliest section steel to the truss-like structure and then to the box section and truss structure. The truss structure is commonly used today. The cantilever method is mostly used in the erection of the steel-tube truss structure, and the swing method is also used in various forms. To reduce the steel consumption and control the structural stress and deformation during the construction, the CFST truss structure is innovatively introduced as the embedded arch framework in China, and the load adjustment methods are adopted, including preloading, auxiliary anchor cables, multi-point balanced pouring, and stay cables. In recent years, the pouring ring number for the encased concrete in the cross-section significantly reduces to three or less due to the application of the strong CFST arch framework. In terms of the application of the Melan method, the researches on materials, structure, and construction technology focusing on the strong CFST arch framework should be further conducted. Regarding the Melan arch structure, the researches on the mechanical performance of steel-tube-reinforced concrete structures, ultra-high-performance materials, and steel web(rod)-concrete composite arches should be strengthened. Meanwhile, the durability of the Melan arch bridge should be thoroughly explored for the design of new bridges and the repair as well as the maintenance of existing bridges. 5 tabs, 18 figs, 85 refs.
-
Key words:
- bridge engineering /
- Melan method /
- concrete arch /
- embedded arch framework /
- concrete-filled steel tube /
- review
-
表 1 中国大跨径美兰拱桥
Table 1. Long-span Melan arch bridges in China
序号 桥名 建成时间 跨径/m 拱架类型 1 辽宁丹东沙河口大桥 1985 156 半劲性拱架 2 四川宜宾小南门桥 1990 240 半劲性拱架 3 广西邕宁邕江大桥 1996 312 一般CFST拱架 4 重庆万县长江大桥 1997 420 一般CFST拱架 5 贵州沪昆高铁北盘江大桥 2016 445 一般CFST拱架 6 四川新市西宁河大桥 在建 510 强劲CFST拱架 7 广西天峨龙滩特大桥 在建 600 强劲CFST拱架 表 2 CFST美兰拱桥混凝土强度等级
Table 2. Concrete strength grades of CFST Melan arch bridges
强度等级 C30 C40 C45 C50 C55 C60 C80 C100 C120 合计 管内 数量/座 1 11 1 13 3 11 6 3 1 50 比例/% 2.0 22.0 2.0 26.0 6.0 22.0 12.0 6.0 2.0 100.0 外包 数量/座 2 9 1 14 8 5 39 比例/% 5.1 23.1 2.6 35.9 20.5 12.8 100.0 表 3 CFST美兰拱桥截面形式统计
Table 3. Section form statistics of CFST Melan arch bridges
类别 肋拱 箱板拱 箱肋 工字肋 单室 双室 双室 三室 四室 数量/座 29 8 1 1 10 1 比例/% 58 16 2 2 20 2 合计/% 74 2 24 表 4 外包混凝土浇筑分环数
Table 4. Ring numbers for encased concrete pouring
阶段 横向分环数 ≤3 4 5 6 ≥7 合计 第2阶段 数量/座 10 13 1 1 25 比例/% 40.0 52.0 4.0 4.0 100 第3阶段 数量/座 18 4 1 23 比例/% 78.3 17.4 4.3 100.0 表 5 强劲CFST埋置拱架美兰拱桥混凝土浇筑方案
Table 5. Schemes of concreting in Melan arch bridges with strong CFST embedded arch formwork
序号 桥名 跨径/m 建成年份 横向分环数 纵向分段数 1 四川嘉陵江大桥 364 2012 3 16 2 四川泸州磨刀溪大桥 266 2015 2 16 3 四川布拖金沙江大桥 260 2018 2 12 4 四川官盛渠江特大桥 300 2019 2 8 5 四川金阳金沙江大桥 280 2019 2 12 6 四川新市西宁河大桥 510 在建 3 12 7 广西天峨龙滩特大桥 600 在建 3 4 -
[1] SAVOR Z, BLEIZIFFER J. From Melan patent to arch bridges of 400 m spans[C]//Fuzhou University. Proceedings of Chinese-Croatian Joint Colloquium on Long Span Arch Bridges. Fuzhou: Fuzhou University, 2008: 349-356. [2] 陈宝春, 刘君平. 世界拱桥建设与技术发展综述[J]. 交通运输工程学报, 2020, 20(1): 27-41. doi: 10.19818/j.cnki.1671-1637.2020.01.002CHEN Bao-chun, LIU Jun-ping. Review of construction and technology development of arch bridges in the world[J]. Journal of Traffic and Transportation Engineering, 2020, 20(1): 27-41. (in Chinese) doi: 10.19818/j.cnki.1671-1637.2020.01.002 [3] 陈宝春, 韦建刚, 周俊, 等. 我国钢管混凝土拱桥应用现状与展望[J]. 土木工程学报, 2017, 50(6): 50-61. https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC201706006.htmCHEN Bao-chun, WEI Jian-gang, ZHOU Jun, et al. Application of concrete-filled steel tube arch bridges in China: current status and prospects[J]. China Civil Engineering Journal, 2017, 50(6): 50-61. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC201706006.htm [4] 赵人达, 张正阳. 我国钢管混凝土劲性骨架拱桥发展综述[J]. 桥梁建设, 2016, 46(6): 45-50. https://www.cnki.com.cn/Article/CJFDTOTAL-QLJS201606010.htmZHAO Ren-da, ZHANG Zheng-yang. A summary of development of concrete-filled steel tube framed arch bridges in China[J]. Bridge Construction, 2016, 46(6): 45-50. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-QLJS201606010.htm [5] ZHENG Jie-lian, WANG Jian-jun. Concrete-filled steel tube arch bridges in China[J]. Engineering, 2018, 4(1): 143-155. doi: 10.1016/j.eng.2017.12.003 [6] 陈宝春, 张梦娇, 刘君平, 等. 我国混凝土拱桥应用现状与展望[J]. 福州大学学报(自然科学版), 2021, 49(5): 716-726. https://www.cnki.com.cn/Article/CJFDTOTAL-FZDZ202105012.htmCHEN Bao-chun, ZHANG Meng-jiao, LIU Jun-ping, et al. Application and prospects of concrete arch bridges in China[J]. Journal of Fuzhou University (Natural Science Edition), 2021, 49(5): 716-726. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-FZDZ202105012.htm [7] 牟廷敏, 梁健, 范碧琨, 等. 大跨径钢筋混凝土拱桥的新作为[J]. 中国公路, 2019(5): 58-61. https://www.cnki.com.cn/Article/CJFDTOTAL-GLZG201905018.htmMU Ting-min, LIANG Jian, FAN Bi-kun, et al. New application of long-span reinforced concrete arch bridge[J]. China Highway, 2019(5): 58-61. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GLZG201905018.htm [8] 周源, 王戈. 强劲骨架在钢管混凝土劲性骨架拱桥中的应用[J]. 山西交通科技, 2019(3): 65-69. https://www.cnki.com.cn/Article/CJFDTOTAL-SXJT201903022.htmZHOU Yuan, WANG Ge. The application of stiff skeleton in concrete-filled steel tube rigid skeleton arch bridge[J]. Shanxi Science and Technology of Communications, 2019(3): 65-69. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SXJT201903022.htm [9] MILLER A B, CLARK K M, GRIMES M C. A survey of masonry and concrete arch bridges in Virginia[R]. Charlottesville: Virginia Transportation Research Council, 2000. [10] VAN STEENWYK R. First reinforced concrete bridge in the United States[EB/OL]. (2021-08-31)[2022-11-02]. https://www.hmdb.org/m.asp?m=101270. [11] TROYANO L F. Procedures for the construction of large concrete arches[C]//CIMNE. Arch Bridges IV Proceedings of Advances in Assessment, Structural Design and Construction. Barcelona: CIMNE, 2004: 55-66. [12] TETSUO K, YASUHIRO F, WILLIAMD P, et al. New construction method for arch bridges-tubular steel arches filled with concrete act as falsework and structure[J]. Concrete Construction, 1991, 36(9): 11-12. [13] 张凯生. 拱桥施工新方法[J]. 国外公路, 1992(5): 29-30. https://www.cnki.com.cn/Article/CJFDTOTAL-GWGL199205007.htmZHANG Kai-sheng. New construction method of arch bridge[J]. Foreign Highway, 1992(5): 29-30. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GWGL199205007.htm [14] 陈宝春, 叶琳. 我国混凝土拱桥现状调查与发展方向分析[J]. 中外公路, 2008, 28(2): 89-96. https://www.cnki.com.cn/Article/CJFDTOTAL-GWGL200802027.htmCHEN Bao-chun, YE Lin. Current status investigation and prospects of concrete arch bridges in China[J]. Journal of China and Foreign Highway, 2008, 28(2): 89-96. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GWGL200802027.htm [15] 王元水, 孙树文. 铁长线宽甸蚂蚁沙桥的加固[J]. 辽宁省交通高等专科学校学报, 2001, 3(4): 35-36. https://www.cnki.com.cn/Article/CJFDTOTAL-LJTX200104012.htmWANG Yuan-shui, SUN Shu-wen. The reinforce of the Mayisha Bridge in Tie-Chang Motor Road[J]. Journal of Liaoning Provincial College of Communications, 2001, 3(4): 35-36. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-LJTX200104012.htm [16] 关宏. 丹东沙河口彩虹桥拆除方案[J]. 沈阳师范大学学报(自然科学版), 2009, 27(2): 217-219. https://www.cnki.com.cn/Article/CJFDTOTAL-SYSX200902028.htmGUAN Hong. Demolition scheme of existing arch bridge at Shahekou of Dandong[J]. Journal of Shenyang Normal University (Natural Science), 2009, 27(2): 217-219. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SYSX200902028.htm [17] 魏建东. 宜宾小南门大桥的抢修加固与恢复工程[J]. 公路, 2003(4): 34-38. https://www.cnki.com.cn/Article/CJFDTOTAL-GLGL200304009.htmWEI Jian-dong. Urgent reinforcement and restoration of Xiaonanmen Bridge in Yibin City[J]. Highway, 2003(4): 34-38. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GLGL200304009.htm [18] 陈宝春. 钢管混凝土拱桥发展综述[J]. 桥梁建设, 1997, 27(2): 8-13. https://www.cnki.com.cn/Article/CJFDTOTAL-QLJS702.001.htmCHEN Bao-chun. A summarized account of developments in concrete-filled steel tube arch bridge[J]. Bridge Construction, 1997, 27(2): 8-13. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-QLJS702.001.htm [19] LIU Jun-ping, TRAN Q B, TAN Yi-long, et al. Design and construction of Hoang Van Thu Bridge in Vietnam[C]//ARÊDE A, COSTA A. Proceedings of 9th International Conference on Arch Bridges. Berlin: Springer, 2019: 545-552. [20] 程懋方, 陈俊卿. 大跨度刚架拱桥的设计与施工[J]. 有色冶金设计与研究, 1995(2): 43-49. https://www.cnki.com.cn/Article/CJFDTOTAL-YSYJ199502008.htmCHENG Mao-fang, CHEN Jun-qing. Design and construction of long-span steel frame arch bridge[J]. Nonferrous Metals Engineering and Research, 1995(2): 43-49. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSYJ199502008.htm [21] 杨积康, 刘任彪. 倮果金沙江大桥主跨劲性钢管骨架施工技术[J]. 西南公路, 1994(4): 13-18.YANG Ji-kang, LIU Ren-biao. Construction technology of steel tube skeleton for main span of Luoguo Jinsha River Bridge[J]. Southwest Highway, 1994(4): 13-18. (in Chinese) [22] GOJ K. Restoration of the Echelsbacher Bridge in Germany[J]. Proceedings of the Institution of Civil Engineers—Engineering History and Heritage, 2017, 170(31): 152-161. [23] HUANG Yu-fan, BRUNO B, TOBIA Z, et al. Shaking table tests for the evaluation of the seismic performance of an innovative lightweight bridge with CFST composite truss girder and lattice pier[J]. Engineering Structures, 2014(15): 73-86. [24] 占玉林, 赵人达, 徐腾飞, 等. 钢管混凝土组合格构柱高墩大跨连续刚构桥非线性研究[J]. 四川建筑科学研究, 2009, 35(6): 38-41. https://www.cnki.com.cn/Article/CJFDTOTAL-ACZJ200906010.htmZHAN Yu-lin, ZHAO Ren-da, XU Teng-fei, et al. Nonlinear analysis on continuous rigid frame bridge with large span and high-pier made of concrete filled steel tube laced columns[J]. Sichuan Building Science, 2009, 35(6): 38-41. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ACZJ200906010.htm [25] 吴庆雄, 佘智敏, 袁辉辉, 等. 钢管混凝土箱形叠合柱抗震性能试验研究[J]. 建筑结构学报, 2021, 42(6): 108-117. https://www.cnki.com.cn/Article/CJFDTOTAL-JZJB202106010.htmWU Qing-xiong, SHE Zhi-min, YUAN Hui-hui, et al. Experimental study on seismic performance of CFST reinforced concrete column with hollow box section[J]. Journal of Building Structures, 2021, 42(6): 108-117. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JZJB202106010.htm [26] CHEN Bao-chun. Construction methods of arch bridges in China[C]//CHEN Bao-chun, WEI Jian-gang. Proceedings of 2nd Chinese-Croatian Joint Colloquium on Long Span Arch Bridges. Fuzhou: Fuzhou University, 2009: 1-186. [27] 陈宝春, 王远洋, 黄卿维. 波形钢腹板混凝土拱桥新桥型构思[J]. 世界桥梁, 2006(4): 10-14. https://www.cnki.com.cn/Article/CJFDTOTAL-GWQL200604003.htmCHEN Bao-chun, WANG Yuan-yang, HUANG Qing-wei. Conception of new type of concrete arch bridge with corrugated steel webs[J]. World Bridges, 2006(4): 10-14. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GWQL200604003.htm [28] 黄卿维, 叶琳, 陈宝春. 平钢腹板-混凝土组合拱桥试设计研究[J]. 福州大学学报(自然科学版), 2016, 44(2): 232-237. https://www.cnki.com.cn/Article/CJFDTOTAL-FZDZ201602015.htmHUANG Qing-wei, YE lin, CHEN Bao-chun. Trial-design research on concrete arch bridge with plain steel webs[J]. Journal of Fuzhou University (Natural Science Edition), 2016, 44(2): 232-237. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-FZDZ201602015.htm [29] 韦建刚, 牟廷敏, 缪锋, 等. 钢腹杆-混凝土新型组合箱拱桥试设计[J]. 交通科学与工程, 2009, 25(2): 40-45. https://www.cnki.com.cn/Article/CJFDTOTAL-CSJX200902009.htmWEI Jian-gang, MU Ting-min, MIAO Feng, et al. Trial-design on new-type composite box arch bridge with steel truss webs and concrete flanges[J]. Journal of Transport Science and Engineering, 2009, 25(2): 40-45. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-CSJX200902009.htm [30] 范亮, 周志祥. 拱桥钢箱-混凝土组合受弯构件试验研究[J]. 土木建筑与环境工程, 2009, 31(6): 15-21. https://www.cnki.com.cn/Article/CJFDTOTAL-JIAN200906002.htmFAN Liang, ZHOU Zhi-xiang. Experimental analysis for steel box-concrete composite beam of arch bridge[J]. Journal of Civil Architectural and Environmental Engineering, 2009, 31(6): 15-21. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JIAN200906002.htm [31] 朱世峰, 周志祥. 钢-混凝土组合拱桥竖转施工体系研究[J]. 施工技术, 2009, 38(7): 64-68. https://www.cnki.com.cn/Article/CJFDTOTAL-SGJS200907025.htmZHU Shi-feng, ZHOU Zhi-xiang. Study on construction system of steel-concrete composite arch bridge by vertical rotation[J]. Construction Technology, 2009, 38(7): 64-68. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SGJS200907025.htm [32] 陈宝春, 刘福忠, 韦建刚. 327座钢管混凝土拱桥的统计分析[J]. 中外公路, 2011, 31(3): 96-103. https://www.cnki.com.cn/Article/CJFDTOTAL-GWGL201103025.htmCHEN Bao-chun, LIU Fu-zhong, WEI Jian-gang. Statistical analysis of 327 concrete filled steel tube arch bridges[J]. Journal of China and Foreign Highway, 2011, 31(3): 96-103. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GWGL201103025.htm [33] 赵胤儒, 朱克兆. 钢管混凝土劲性骨架钢筋混凝土拱桥拱肋施工稳定分析[J]. 四川建筑, 2011, 31(6): 170-171. https://www.cnki.com.cn/Article/CJFDTOTAL-SCJI201106063.htmZHAO Yin-ru, ZHU Ke-zhao. Stability analysis of arch rib construction of concrete-filled steel tube stiffening frames reinforced concrete arch bridge[J]. Sichuan Architecture, 2011, 31(6): 170-171. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SCJI201106063.htm [34] 陈宝春, 陈康明, 赵秋. 中国钢拱桥发展现状调查与分析[J]. 中外公路, 2011, 31(2): 121-127. https://www.cnki.com.cn/Article/CJFDTOTAL-GWGL201102032.htmCHEN Bao-chun, CHEN Kang-ming, ZHAO Qiu. Investigation and analysis on development status of steel arch bridges in China[J]. Journal of China and Foreign Highway, 2011, 31(2): 121-127. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GWGL201102032.htm [35] 张洲. 中承式钢管混凝土劲性骨架拱桥结构特性分析[D]. 成都: 西南交通大学, 2005.ZHANG Zhou. Structure behavioral analysis of concrete-filled steel tube stiffening frames reinforced half-through arch bridge[J]. Chengdu: Southwest Jiaotong University, 2005. (in Chinese) [36] CHEN Bao-chun. Damage control, repair and strengthening of concrete arch bridges in China[C]//ROSEMARIE H, ALPER I, MASOUD M. 2019-Fifth Conference on Smart Monitoring, Assessment and Rehabilitation of Civil Structures. Potsdam: German Society for Non-Destructive Testing, 2019: 1-12. [37] 王太超, 臧丹, 赵晶. 董家梁子大桥有平衡重转体施工技术[J]. 铁道建筑技术, 1997(4): 14-16. https://www.cnki.com.cn/Article/CJFDTOTAL-TDJS199704005.htmWANG Tai-chao, ZANG Dan, ZHAO Jing. Rotating construction technology with balance weight for Dongjialiangzi Bridge[J]. Railway Construction Technology, 1997(4): 14-16. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TDJS199704005.htm [38] 陈金城. 吊钟岩大桥主拱劲性钢管骨架转体施工技术[J]. 铁道建筑, 2004(8): 3-5. https://www.cnki.com.cn/Article/CJFDTOTAL-TDJZ200408000.htmCHEN Jin-cheng. Rotating construction technology of rigid steel tube skeleton of main arch in Diaozhongyan Bridge[J]. Railway Engineering, 2004(8): 3-5. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TDJZ200408000.htm [39] 杨兰, 于天才, 梁什兴. 香炉峡北江大桥设计[J]. 公路, 1998(6): 12-15. https://www.cnki.com.cn/Article/CJFDTOTAL-GLGL199806002.htmYANG Lan, YU Tian-cai, LIANG Shi-xing. Design of Xiangluxia Beijiang Bridge[J]. Highway, 1998(6): 12-15. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GLGL199806002.htm [40] 唐云伟, 陆永军, 皮勇. 黄陵洞大桥水平转体施工关键技术研究[J]. 交通科技, 2007(5): 9-12. https://www.cnki.com.cn/Article/CJFDTOTAL-SKQB200705003.htmTANG Yun-wei, LU Yong-jun, PI Yong. Key technique research on horizontal swing of Huanglingdong Bridge[J]. Transportation Science and Technology, 2007(5): 9-12. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SKQB200705003.htm [41] 史永亮. 大跨度钢管混凝土劲性骨架箱形拱桥平转施工稳定性研究[J]. 铁道建筑, 2020, 60(7): 34-37. https://www.cnki.com.cn/Article/CJFDTOTAL-TDJZ202007008.htmSHI Yong-liang. Stability research on horizontal rotation construction of long-span box-arch bridge with concrete-filled steel tube rigid skeleton[J]. Railway Engineering, 2020, 60(7): 34-37. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TDJZ202007008.htm [42] 任为东. 大瑞铁路澜沧江特大桥施工关键技术研究[J]. 铁道标准设计, 2021, 65(4): 82-88. https://www.cnki.com.cn/Article/CJFDTOTAL-TDBS202104015.htmREN Wei-dong. Research on the key construction technology of the Lancang River Super Major Bridge of Dali-Ruili Railway[J]. Railway Standard Design, 2021, 65(4): 82-88. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TDBS202104015.htm [43] 陈天民, 钱大治, 严泗亮, 等. 金华双龙大桥主桥施工技术[J]. 施工技术, 2001(6): 27-28. https://www.cnki.com.cn/Article/CJFDTOTAL-SGJS200106013.htmCHEN Tian-min, QIAN Da-zhi, YAN Si-liang, et al. Construction technology of main bridge of Jinhua Shuanglong Bridge[J]. Construction Technology, 2001(6): 27-28. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SGJS200106013.htm [44] TANABE T. Using steel arches to construct large concrete arch bridges: Kashirajima Bridge on a town roadway, Hinase Kashirajima Route[C]//TANABE T. The Fourth Civil Engineering Conference in the Asian Region. Nagoya: Nagoya University, 2007: 1-6. [45] 韩玉. 钢管拱桥管内混凝土真空辅助灌注试验及实桥应用[J]. 桥梁建设, 2015, 45(2): 19-25. https://www.cnki.com.cn/Article/CJFDTOTAL-QLJS201502004.htmHAN Yu. Tests of vacuum-aided casting of concrete in tubes of a CFST arch bridge and application of the casting to actual bridges[J]. Bridge Construction, 2015, 45(2): 19-25. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-QLJS201502004.htm [46] 郑皆连, 王建军, 冯智, 等. 钢管混凝土拱段真空辅助灌注工艺试验[J]. 中国公路学报, 2014, 27(6): 44-50. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL201406008.htmZHENG Jie-lian, WANG Jian-jun, FENG Zhi, et al. Vacuum aided concrete grouting process test of concrete filled steel tube arch segment[J]. China Journal of Highway and Transport, 2014, 27(6): 44-50. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL201406008.htm [47] 郑皆连. 在劲性拱骨架上实现混凝土连续浇注的探讨[J]. 重庆交通大学学报(自然科学版), 2011, 30(增2): 1099-1105. https://www.cnki.com.cn/Article/CJFDTOTAL-CQJT2011S2005.htmZHENG Jie-lian. Discussion on placing concrete uninterruptedly on closure arch rigid skeleton[J]. Journal of Chongqing Jiaotong University (Natural Science), 2011, 30(S2): 1099-1105. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-CQJT2011S2005.htm [48] 黄家祥. 分环成型的钢管混凝土劲性骨架拱桥主拱圈混凝土施工顺序研究[D]. 南宁: 广西大学, 2019.HUANG Jia-xiang. Study on main arch concreting sequence method of the concrete filled steel tubular arch bridge[D]. Nanning: Guangxi University, 2019. (in Chinese) [49] 张朦朦, 张谢东, 秦川. 大跨度钢管混凝土劲性骨架拱桥外包混凝土方案优化[J]. 武汉理工大学学报(交通科学与工程版), 2016, 40(5): 876-879. https://www.cnki.com.cn/Article/CJFDTOTAL-JTKJ201605023.htmZHANG Meng-meng, ZHANG Xie-dong, QIN Chuan. Outsourcing concrete pouring scheme optimization of large span CFST stiff-skeleton arch bridge[J]. Journal of Wuhan University of Science and Technology (Transportation Science and Engineering Edition), 2016, 40(5): 876-879. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JTKJ201605023.htm [50] 张富贵, 张永水, 董义, 等. 大跨劲性骨架拱圈外包混凝土浇筑方案[J]. 重庆交通大学学报(自然科学版), 2012, 31(2): 210-214. https://www.cnki.com.cn/Article/CJFDTOTAL-XBJT202206046.htmZHANG Fu-gui, ZHANG Yong-shui, DONG Yi, et al. Outsourcing concrete pouring scheme of long-span stiff skeleton arch bridge[J]. Journal of Chongqing Jiaotong University (Natural Science), 2012, 31(2): 210-214. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XBJT202206046.htm [51] 林春姣, 郑皆连. 劲性骨架拱桥主拱圈混凝土四工作面浇筑法[J]. 交通运输工程学报, 2020, 20(6): 82-89. doi: 10.19818/j.cnki.1671-1637.2020.06.007LIN Chun-jiao, ZHENG Jie-lian. Four-working-platform pouring method for main arch ring concrete of rigid skeleton arch bridge[J]. Journal of Traffic and Transportation Engineering, 2020, 20(6): 82-89. (in Chinese) doi: 10.19818/j.cnki.1671-1637.2020.06.007 [52] 吴海军, 王藐民, 陆萍. 劲性骨架混凝土拱桥外包混凝土分环浇筑方案对结构受力的影响[J]. 重庆交通大学学报(自然科学版), 2017, 36(11): 1-6. https://www.cnki.com.cn/Article/CJFDTOTAL-CQJT201711001.htmWU Hai-jun, WANG Miao-min, LU Ping. Influence of pouring cycle schemes of externally wrapped concrete of concrete arch bridge with stiff skeleton on structure mechanics[J]. Journal of Chongqing Jiaotong University (Natural Science), 2017, 36(11): 1-6. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-CQJT201711001.htm [53] 杨国静, 徐勇, 黄毅. 大跨度劲性骨架拱桥外包混凝土方案优化[J]. 铁道工程学报, 2017, 34(10): 50-54. https://www.cnki.com.cn/Article/CJFDTOTAL-TDGC201710010.htmYANG Guo-jing, XU Yong, HUANG Yi. The outer-covered concrete construction scheme optimization of the long-span concrete arch bridge with stiff skeleton[J]. Journal of Railway Engineering, 2017, 34(10): 50-54. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TDGC201710010.htm [54] 王达, 唐成, 张海萍, 等. 大跨度CFST劲性骨架拱桥外包混凝土浇筑施工研究[J]. 中外公路, 2016, 36(5): 67-71. https://www.cnki.com.cn/Article/CJFDTOTAL-GWGL201605017.htmWANG Da, TANG Cheng, ZHANG Hai-ping, et al. Research on concrete pouring construction of long-span CFST rigid skeleton arch bridge[J]. Journal of China and Foreign Highway, 2016, 36(5): 67-71. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GWGL201605017.htm [55] 童加明, 邓年春, 林春姣, 等. 大跨径钢管混凝土劲性骨架拱桥外包混凝土浇筑顺序研究[J]. 公路, 2020, 65(7): 92-97. https://www.cnki.com.cn/Article/CJFDTOTAL-GLGL202007018.htmDONG Jia-ming, DENG Nian-chun, LIN Chun-jiao, et al. Study of the outer concrete casting sequence for long span arch bridges with a CFST stiff skeleton[J]. Highway, 2020, 65(7): 92-97. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GLGL202007018.htm [56] 顾安邦, 刘忠, 周水兴. 万县长江大桥砼时效和几何、材料等非线性因素影响分析[J]. 重庆交通学院学报, 1999, 18(4): 1-7. https://www.cnki.com.cn/Article/CJFDTOTAL-CQJT199904000.htmGU An-bang, LIU Zhong, ZHOU Shui-xing. Analysis of time dependent effects of concrete, geometrical nonlinearities, material nonlinearities of Wanxian Yangtze River Bridge[J]. Journal of Chongqing Jiaotong Institute, 1999, 18(4): 1-7. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-CQJT199904000.htm [57] CHEN X Y L, XIE H Q, HU J T. Design of the Beipanjiang Bridge on the high-speed railway between Shanghai and Kunming[C]//RADIC J, CHEN Bao-chun. Proceedings of 3rd Chinese-Croatian Joint Colloquium on Long Span Arch Bridges. Zagreb: Structural Engineering Conference, 2011: 71-82. [58] 周水兴, 江礼忠, 曾忠, 等. 拱桥节段施工斜拉扣挂索力仿真计算研究[J]. 重庆交通学院学报, 2000, 19(3): 8-12. https://www.cnki.com.cn/Article/CJFDTOTAL-CQJT200003002.htmZHOU Shui-xing, JIANG Li-zhong, ZENG Zhong, et al. Simulate calculation study of cable-stayed force for arch bridge segmental construction[J]. Journal of Chongqing Jiaotong Institute, 2000, 19(3): 8-12. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-CQJT200003002.htm [59] 王国俊. 大跨度钢管混凝土拱桥拱肋吊装中的扣索索力计算[J]. 长沙理工大学学报(自然科学版), 2005, 2(4): 17-21. https://www.cnki.com.cn/Article/CJFDTOTAL-HNQG200504003.htmWANG Guo-jun. Calculation of stayed-buckle cable force for concrete-filled steel tubular arch bridge with long span during lifting[J]. Journal of Changsha University of Science and Technology (Natural Science), 2005, 2(4): 17-21. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HNQG200504003.htm [60] 张治成, 叶贵如, 王云峰. 大跨度拱桥拱肋线形调整中的扣索索力优化[J]. 工程力学, 2004, 21(6): 187-192. https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX20040600U.htmZHANG Zhi-cheng, YE Gui-ru, WANG Yun-feng. Optimization of stayed-buckle cable forces during adjustment of the line-shape on long span arch bridge[J]. Engineering Mechanics, 2004, 21(6): 187-192. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX20040600U.htm [61] 林春姣, 郑皆连. 南盘江特大桥拱圈混凝土斜拉扣挂法施工分析[J]. 桥梁建设, 2016, 46(5): 116-121. https://www.cnki.com.cn/Article/CJFDTOTAL-QLJS201605023.htmLIN Chun-jiao, ZHENG Jie-lian. Analysis of construction of main arch rib concrete of Nanpan River Bridge using fastening stay method[J]. Bridge Construction, 2016, 46(5): 116-121. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-QLJS201605023.htm [62] 陈宝春, 李莉, 罗霞, 等. 超高强钢管混凝土研究综述[J]. 交通运输工程学报, 2020, 20(5): 1-23. doi: 10.19818/j.cnki.1671-1637.2020.05.001CHEN Bao-chun, LI Li, LUO Xia, et al. Review on ultra-high strength concrete filled steel tubes[J]. Journal of Traffic and Transportation Engineering, 2020, 20(5): 1-23. (in Chinese) doi: 10.19818/j.cnki.1671-1637.2020.05.001 [63] 李聪, 陈宝春, 韦建刚. 粗集料UHPC收缩与力学性能[J]. 交通运输工程学报, 2019, 19(5): 11-20. doi: 10.19818/j.cnki.1671-1637.2019.05.002LI Cong, CHEN Bao-chun, WEI Jian-gang. Shrinkage and mechanical properties of UHPC with coarse aggregate[J]. Journal of Traffic and Transportation Engineering, 2019, 19(5): 11-20. (in Chinese) doi: 10.19818/j.cnki.1671-1637.2019.05.002 [64] MARCELO W, FERNANDO S, FABIO P, et al. The Santos-Guaruja Bridge over Santos Channel[C]//ROBERTO F. Proceedings of 9th International Conference on Arch Bridges. Porto: University of Porto, 2019: 655-662. [65] 郑皆连, 王建军, 牟廷敏, 等. 700 m级钢管混凝土拱桥设计与建造可行性研究[J]. 中国工程科学, 2014, 16(8): 33-37.ZHENG Jie-lian, WANG Jian-jun, MU Ting-min, et al. Feasibility study on design and construction of concrete filled steel tubular arch bridge with a span of 700 m[J]. 2014, 16(8): 33-37. (in Chinese) [66] 郭明, 尧国皇, 陈宜言. 钢管混凝土(叠合)柱在超高层建筑结构中的应用[J]. 广东土木与建筑, 2010, 17(11): 10-12. https://www.cnki.com.cn/Article/CJFDTOTAL-GDTM201011004.htmGUO Ming, YAO Guo-huang, CHEN Yi-yan. Application of concrete filled steel tubular column in high-rise building structures[J]. Guandong Architecture Civil Engineering, 2010, 17(11): 10-12. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GDTM201011004.htm [67] 尧国皇, 李永进, 廖飞宇. 钢管混凝土叠合柱轴压性能研究[J]. 建筑结构学报, 2013, 34(5): 114-121. https://www.cnki.com.cn/Article/CJFDTOTAL-JZJB201305013.htmYAO Guo-huang, LI Yong-jin, LIAO Fei-yu. Behavior of concrete-filled steel tube reinforced concrete columns subjected to axial compression[J]. Journal of Building Structures, 2013, 34(5): 114-121. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JZJB201305013.htm [68] 杨艳, 周俊, 韦建刚, 等. 基于面积比的钢管混凝土劲性骨架组合柱承载力[J]. 南昌大学学报(工科版), 2018, 40(3): 239-245. https://www.cnki.com.cn/Article/CJFDTOTAL-NCDG201803007.htmYANG Yan, ZHOU Jun, WEI Jian-gang, et al. Ultimate bearing capacity of concrete filled steel tube reinforced concrete columns based on area ratio[J]. Journal of Nanchang University (Engineering and Technology), 2018, 40(3): 239-245. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-NCDG201803007.htm [69] 郭全全, 赵羽西, 李芊, 等. 钢管混凝土叠合柱偏心受压性能试验研究[J]. 建筑结构学报, 2013, 34(12): 103-111. https://www.cnki.com.cn/Article/CJFDTOTAL-JZJB201312014.htmGUO Quan-quan, ZHAO Yu-xi, LI Qian, et al. Experimental study on eccentric compressive property of steel tube-reinforced concrete columns[J]. Journal of Building Structures, 2013, 34(12): 103-111. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JZJB201312014.htm [70] 宋朝. 钢管混凝土组合柱受压性能理论研究[D]. 兰州: 兰州交通大学, 2013.SONG Chao. Theoretic study on compression characteristics of composite column of concrete filled steel tube[D]. Lanzhou: Lanzhou Jiaotong University, 2013. (in Chinese) [71] 康洪震, 钱稼茹. 钢管高强混凝土组合柱轴心抗压数值分析[J]. 混凝土, 2009(7): 4-7. https://www.cnki.com.cn/Article/CJFDTOTAL-HLTF200907002.htmKANG Hong-zhen, QIAN Jia-ru. Numerical analysis of high strength concrete filled steel tube composite columns under centric axial compressive loading[J]. Concrete, 2009(7): 4-7. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HLTF200907002.htm [72] 聂建国, 柏宇, 李盛勇, 等. 钢管混凝土核心柱轴压组合性能分析[J]. 土木工程学报, 2005, 38(9): 9-13. https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC200509001.htmNIE Jian-guo, BAI Yu, LI Sheng-yong, et al. Analyses on composite column with inside concrete filled steel tube under axial compression[J]. China Civil Engineering Journal, 2005, 38(9): 9-13. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC200509001.htm [73] 林拥军, 李洁, 程文瀼. 配有圆钢管的钢骨混凝土柱受力性能的研究[J]. 四川建筑科学研究, 2003, 29(3): 16-17. https://www.cnki.com.cn/Article/CJFDTOTAL-ACZJ200303005.htmLIN Yong-jun, LI Jie, CHEN Wen-rang. The properties of the SRC column with steel circle pipe under loading[J]. Building Science Research of Sichuan, 2003, 29(3): 16-17. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ACZJ200303005.htm [74] 林拥军, 林池锬, 张晶. 圆钢管钢骨混凝土柱的承载力参数分析[J]. 钢结构, 2018, 33(10): 40-46. https://www.cnki.com.cn/Article/CJFDTOTAL-GJIG201810008.htmLIN Yong-jun, LIN Chi-xian, ZHANG Jing. Analysis of bearing capacity parameters of SRC columns with circle steel tube[J]. Steel Construction, 2018, 33(10): 40-46. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GJIG201810008.htm [75] 刘丽英. 新型钢管混凝土叠合柱轴压力学性能研究[D]. 福州: 福州大学, 2013.LIU Li-ying. Study on behavior of a new concrete-filled steel tube reinforced concrete column under axial compression[D]. Fuzhou: Fuzhou University, 2013. (in Chinese) [76] 安钰丰. 方形钢管混凝土叠合压弯构件力学性能和设计方法研究[D]. 北京: 清华大学, 2015.AN Yu-feng. Performance and design method of square concrete-encased CFST members under combined compression and bending[D]. Beijing: Tsinghua University, 2015. (in Chinese) [77] 王永铭. 外包UHPC钢管混凝土组合柱轴压承载力研究[D]. 福州: 福州大学, 2019.WANG Yong-ming. Research on axial bearing capacity of CFST composite columns wrapped with UHPC[D]. Fuzhou: Fuzhou University, 2019. (in Chinese) [78] 蔡景明. 钢筋增强ECC-钢管混凝土组合柱的力学性能研究[D]. 南京: 东南大学, 2018.CAI Jing-ming. The mechanical behaviors of steel reinforced ECC encased CFST columns[D]. Nanjing: Southeast University, 2018. (in Chinese) [79] 福州大学. 北盘江大桥有初应力钢管混凝土劲性骨架组合柱极限承载力研究[R]. 福州: 福州大学, 2015.Fuzhou University. Study on ultimate bearing capacity of concrete filled steel tubular rigid frame composite columns with initial stress in Beipan River Bridge[R]. Fuzhou: Fuzhou University, 2015. (in Chinese) [80] 徐悟, 于清, 尧国皇. 初应力对钢管混凝土叠合柱轴压性能影响[J]. 清华大学学报(自然科学版), 2014, 54(5): 556-562. https://www.cnki.com.cn/Article/CJFDTOTAL-QHXB201405002.htmXU Wu, YU Qing, YAO Guo-huang. Effect of preload on the axial capacity of CFST reinforced concrete columns[J]. Journal of Tsinghua University (Science and Technology), 2014, 54(5): 556-562. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-QHXB201405002.htm [81] 晏彪. 初应力对劲性骨架混凝土结构极限承载力的影响研究[D]. 重庆: 重庆交通大学, 2013.YAN Biao. The influence of initial stress for ultimate bearing capacity of the skeleton of concrete structures[D]. Chongqing: Chongqing Jiaotong University, 2013. (in Chinese) [82] HOLTH H. Photos: Cooke Road Bridge[OB/OL]. (2012-01-11)[2022-12-02]. https://historicbridges.org/bridges/browser/photosviewer.php?bridgebrowser=ohio/cooke4236580/&gallerynum=2&gallerysize=2. [83] MILLER A B, CLARK K M, GRIMES M C. A management plan for historic bridges in Virginia[R]. Charlottesville: Virginia Transportation Research Council, 2001. [84] 钱稼茹, 赵作周, 纪晓东. 钢管与管外混凝土界面粘结抗剪能力试验研究[J]. 建筑结构, 2015, 45(3): 12-16. https://www.cnki.com.cn/Article/CJFDTOTAL-JCJG201503005.htmQIAN Jia-ru, ZHAO Zuo-zhou, JI Xiao-dong. Test study on shear-bond capacity of steel tube-out of tube concrete interface[J]. Building Structure, 2015, 45(3): 12-16. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JCJG201503005.htm [85] HAN Lin-hai, WANG Zhi-bin, XU Wu, et al. Behavior of concrete-encased CFST members under axial tension[J]. Journal of Structural Engineering, 2016, 142(2): 04015149. -