A Fe-SMA-based fabricated active reinforcement method for fatigue cracks in steel bridge decks
-
摘要: 为实现对钢桥面板的快速加固,提出了基于铁基形状记忆合金(Fe-SMA)的钢桥面板疲劳裂纹新型装配式主动加固的方法;通过精细化双面加固有限元模型计算结果及对初步激活与加载试验的观察,验证了加固系统安全性与可靠性;在此基础上以U肋对接焊缝的疲劳裂纹为研究对象,根据线弹性断裂力学,结合该疲劳细节受力与开裂特征,采用循环荷载作用下表面裂纹和中裂纹尖端的Ⅰ型裂纹应力强度因子幅值对加固系统的加固效果进行评价,确定了针对不同长度裂纹的具体加固方案。研究结果表明:基于Fe-SMA的钢桥面板疲劳裂纹主动加固方法可将裂纹尖端应力强因子幅值降低至扩展阈值以下,能有效遏制疲劳裂纹的进一步扩展;对于长度在50 mm以下的未贯穿型疲劳裂纹可采用宽度为60 mm的Fe-SMA进行加固,裂纹前缘关注点应力强度因子降幅达90%以上;当贯穿型疲劳裂纹长度为50~120 mm时,可采用宽度为120 mm的Fe-SMA进行加固;当疲劳裂纹长度为120~350 mm时,需采用底板、腹板同时加固的方法来对疲劳裂纹进行加固,均能达到理想的止裂状态。Abstract: A new fabricated active reinforcement method for fatigue cracks in steel bridge decks based on iron-based shape memory alloy (Fe-SMA) was proposed to achieve the rapid reinforcement of the steel bridge decks. The safety and reliability of the reinforcement system were verified by the calculation results of the finite-element refined double-sided reinforcement model and the observation of the preliminary activating and loading test. On this basis, the fatigue cracks in the U-rib butt weld were taken as the research object, the linear elastic fracture mechanics was involved, the stress and cracking characteristics of the fatigue details were considered, the amplitude of the stress intensity factor of mode-Ⅰ cracks at the tips of surface and internal cracks under cyclic loading was used to evaluate the reinforcement effect of the reinforcement system, and the specific reinforcement schemes for cracks with different lengths were determined. Analysis research results show that the amplitude of the stress intensity factor of the crack tips can be reduced to below the propagation threshold by the Fe-SMA-based active reinforcement method for fatigue cracks in steel bridge decks, and can effectively restrain the further propagation of fatigue cracks. The non-penetrating fatigue cracks shorter than 50 mm can be reinforced by the Fe-SMA with a width of 60 mm, and the stress intensity factor of the points of concern at the crack tips reduces by more than 90%. The 50-120 mm long penetrating fatigue cracks can be reinforced by the Fe-SMA with a width of 120 mm. The fatigue cracks with a length of 120-350 mm need to be reinforced simultaneously by bottom plates and webs. The desired crack-arresting state is achieved invariably. 2 tabs, 19 figs, 30 refs.
-
表 1 关键测点的试验值与理论值对比
Table 1. Comparison between experimental and theoretical values of key measuring points
参数 测点 试验值 有限元理论值 位移/mm d1 -1.35 -1.36 d2 -1.33 -1.36 应力/MPa s3 100.3 101.0 s4 82.7 85.1 s5 75.9 82.9 s7 104.3 107.2 表 2 Fe-SMA加固件设计参数
Table 2. Design parameters of Fe-SMA reinforcing members
加固方案 Fe-SMA加固件参数/mm 长度 宽度 厚度 Ⅰ 440 60 4 Ⅱ 120 Ⅲ 60 -
[1] 张清华, 卜一之, 李乔. 正交异性钢桥面板疲劳问题的研究进展[J]. 中国公路学报, 2017, 30(3): 14-30, 39. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL201703002.htmZHANG Qing-hua, BU Yi-zhi, LI Qiao. Review on fatigue problems of orthotropic steel bridge deck[J]. China Journal of Highway and Transport, 2017, 30(3): 14-30, 39. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL201703002.htm [2] 张清华, 李俊, 郭亚文, 等. 正交异性钢桥面板结构体系的疲劳破坏模式和抗力评估[J]. 土木工程学报, 2019, 52(1): 71-81. https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC201901009.htmZHANG Qing-hua, LI Jun, GUO Ya-wen, et al. Fatigue failure modes and resistance evaluation of orthotropic steel bridge deck structural system[J]. China Civil Engineering Journal, 2019, 52(1): 71-81. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC201901009.htm [3] 黄传海, 刘志平. 止裂孔与CFRP复合修复含裂纹钢结构的疲劳性能[J]. 机械强度, 2021, 43(2): 418-424. https://www.cnki.com.cn/Article/CJFDTOTAL-JXQD202102024.htmHUANG Chuan-hai, LIU Zhi-ping. Study on fatigue performance of cracked steel structure repaired with stop-hole and CFRP[J]. Journal of Mechanical Strength, 2021, 43(2): 418-424. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JXQD202102024.htm [4] YAMADA K, ISHIKAWA T, KAKIICHI T. Rehabilitation and improvement of fatigue life of welded joints by ICR treatment[J]. Advanced Steel Construction, 2015, 11(3): 294-304. [5] 曾志斌. 正交异性钢桥面板疲劳裂纹的维修加固方法[J]. 钢结构, 2013, 28(4): 20-24. https://www.cnki.com.cn/Article/CJFDTOTAL-GJIG201304008.htmZENG Zhi-bin. Repair and reinforcement methods of fatigue cracks in orthotropic steel bridge deck[J]. Steel Construction, 2013, 28(4): 20-24. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GJIG201304008.htm [6] 王春生, 翟慕赛, HOUANKPO T N O. 正交异性钢桥面板冷维护技术及评价方法[J]. 中国公路学报, 2016, 29(8): 50-58. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL201608007.htmWANG Chun-sheng, ZHAI Mu-sai, HOUANKPO T N O. Cold maintenance technique and assessment method for orthotropic steel bridge deck[J]. China Journal of Highway and Transport, 2016, 29(8): 50-58. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL201608007.htm [7] HAO W, IMAD A, BENSEDDIQ N, et al. On the prediction of the residual fatigue life of cracked structures repaired by the stop-hole method[J]. International Journal of Fatigue, 2010, 32(4): 670-677. doi: 10.1016/j.ijfatigue.2009.09.011 [8] 姜旭, 吕志林, 强旭红, 等. 高强螺栓止裂法修复含裂纹钢板疲劳受力性能[J]. 同济大学学报(自然科学版), 2021, 49(4): 476-486. https://www.cnki.com.cn/Article/CJFDTOTAL-TJDZ202104002.htmJIANG Xu, LYU Zhi-lin, QIANG Xu-hong, et al. Fatigue performance of cracked steel plates repaired by high strength bolt stop-hole method[J]. Journal of Tongji University (Natural Science), 2021, 49(4): 476-486. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TJDZ202104002.htm [9] 于超凡. 基于钢箱梁正交异性板的疲劳损伤加固技术试验研究[D]. 南京: 南京航空航天大学, 2016.YU Chao-fan. Experimental research of the reinforcement technology based on orthotropic plate of steel box girder with fatigue damage[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2016. (in Chinese) [10] 郭耀华. 正交异性钢桥面板疲劳裂纹扩展过程数值模拟及其修复方法研究[D]. 天津: 天津大学, 2014.GUO Yao-hua. Numerical simulation and repair methods of fatigue cracks on steel orthotropic highway bridge deck[D]. Tianjin: Tianjin University, 2014. (in Chinese) [11] 周家刚, 徐志民. 粘贴钢板技术修复钢箱梁疲劳裂纹[J]. 公路, 2020, 65(11): 224-230. https://www.cnki.com.cn/Article/CJFDTOTAL-GLGL202011043.htmZHOU Jia-gang, XU Zhi-ming. Repairing fatigue crack of steel box girder by sticking steel plate technology[J]. Highway, 2020, 65(11): 224-230. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GLGL202011043.htm [12] 叶华文, 李新舜, 帅淳, 等. 无粘结预应力CFRP板加固受损钢梁疲劳试验研究[J]. 西南交通大学学报, 2019, 54(1): 129-136. https://www.cnki.com.cn/Article/CJFDTOTAL-XNJT201901017.htmYE Hua-wen, LI Xin-shun, SHUAI Chun, et al. Fatigue experimental analysis of damaged steel beams strengthened with prestressed unbonded CFRP plates[J]. Journal of Southwest Jiaotong University, 2019, 54(1): 129-136. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XNJT201901017.htm [13] 叶华文, 唐诗晴, 段智超, 等. 预应力纤维增强复合材料(FRP)桥梁结构加固应用2020年度研究进展[J]. 土木与环境工程学报(中英文), 2021, 43(S1): 185-189. https://www.cnki.com.cn/Article/CJFDTOTAL-JIAN2021S1019.htmYE Hua-wen, TANG Shi-qing, DUAN Zhi-chao, et al. State-of-the-art review of the application of fiber reinforced polymer in bridge structures reinforcement in 2020[J]. Journal of Civil and Environmental Engineering, 2021, 43(S1): 185-189. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JIAN2021S1019.htm [14] SHAHVERDI M, CZADERSKI C, MOTAVALLI M. Iron-based shape memory alloys for prestressed near-surface mounted strengthening of reinforced concrete beams[J]. Construction and Building Materials, 2016, 112: 28-38. [15] 陈振宇, 余倩倩, 顾祥林. 形状记忆合金补强损伤钢板疲劳性能研究[J]. 建筑结构学报, 2021, 42(S1): 411-417. https://www.cnki.com.cn/Article/CJFDTOTAL-JZJB2021S1046.htmCHEN Zhen-yu, YU Qian-qian, GU Xiang-lin. Theoretical analysis on fatigue behavior of cracked steel plates retrofitted with shape memory alloy[J]. Journal of Building Structures, 2021, 42(S1): 411-417. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JZJB2021S1046.htm [16] EL-TAHAN M, DAWOOD M, SONG G. Development of a self-stressing NiTiNb shape memory alloy (SMA)/fiber reinforced polymer (FRP) patch[J]. Smart Materials and Structures, 2015, 24(6): 065035. [17] EL-TAHAN M, DAWOOD M. Bond behavior of NiTiNb SMA wires embedded in CFRP composites[J]. Polymer Composites, 2018, 39(10): 3780-3791. [18] CLADERA A, WEBER B, LEINENBACH C, et al. Iron-based shape memory alloys for civil engineering structures: an overview[J]. Construction and Building Materials, 2014, 63: 281-293. [19] IZADI M R, GHAFOORI E, SHAHVERDI M, et al. Development of an Iron-based shape memory alloy (Fe-SMA) strengthening system for steel plates[J]. Engineering Structures, 2018, 174: 433-446. [20] IZADI M, MOTAVALLI M, GHAFOORI E. Iron-based shape memory alloy (Fe-SMA) for fatigue strengthening of cracked steel bridge connections[J]. Construction and Building Materials, 2019, 227: 116800. [21] 张清华, 李俊, 卜一之, 等. 正交异性钢桥面板纵肋与横隔板交叉构造细节疲劳开裂快速加固方法[J]. 中国公路学报, 2018, 31(12): 124-133. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL201812013.htmZHANG Qing-hua, LI Jun, BU Yi-zhi, et al. Rapid reinforcement approach for the fatigue cracking of longitudinal rib-to-diaphragm detail in orthotropic steel bridge deck[J]. China Journal of Highway and Transport, 2018, 31(12): 124-133. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL201812013.htm [22] 卜一之, 金通, 李俊, 等. 纵肋与横隔板交叉构造细节穿透型疲劳裂纹扩展特性及其加固方法研究[J]. 工程力学, 2019, 36(6): 211-218. https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX201906023.htmBU Yi-zhi, JIN Tong, LI Jun, et al. Research on propagation characteristics and reinforcement method of penetrating crack at rib-to-diaphragm welded joints in steel bridge deck[J]. Engineering Mechanics, 2019, 36(6): 211-218. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX201906023.htm [23] 刘飞. 单面螺栓连接及装配式钢结构节点理论与试验研究[D]. 南京: 东南大学, 2015.LIU Fei. Theoretical and experimental research of one-side bolt connection and prefabricated steel structure nodes[D]. Nanjing: Southeast University, 2015. (in Chinese) [24] 王春生, 翟慕赛, 唐友明, 等. 钢桥面板疲劳裂纹耦合扩展机理的数值断裂力学模拟[J]. 中国公路学报, 2017, 30(3): 82-95. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL201703009.htmWANG Chun-sheng, ZHAI Mu-sai, TANG You-ming, et al. Numerical fracture mechanical simulation of fatigue crack coupled propagation mechanism for steel bridge deck[J]. China Journal of Highway and Transport, 2017, 30(3): 82-95. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL201703009.htm [25] 陈世鸣, 陆云, 周聪, 等. 正交异性钢桥面横向焊接接头的疲劳寿命估算[J]. 中南大学学报(自然科学版), 2015, 46(9): 3461-3467. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD201509040.htmCHEN Shi-ming, LU Yun, ZHOU Cong, et al. Fatigue life prediction of weld connection in longitudinal ribs of steel orthotropic decks[J]. Journal of Central South University (Science and Technology), 2015, 46(9): 3461-3467. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD201509040.htm [26] CHEN S M, HUANG Y, ZHOU C, et al. Experimental and numerical study on fatigue performance of U-rib connections[J]. Journal of Constructional Steel Research, 2019, 163: 105796. [27] 陈世鸣, 马家欢, 程栋柱. 正交异性钢桥面板纵肋对接焊缝疲劳性能研究[J]. 桥梁建设, 2018, 48(1): 48-53. https://www.cnki.com.cn/Article/CJFDTOTAL-QLJS201801009.htmCHEN Shi-ming, MA Jia-huan, CHENG Dong-zhu. Study of fatigue performance of butt weld joints for longitudinal ribs of orthotropic steel bridge deck[J]. Bridge Construction, 2018, 48(1): 48-53. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-QLJS201801009.htm [28] RYBICKI E F, KANNINEN M F. A finite element calculation of stress intensity factors by a modified crack closure integral[J]. Engineering Fracture Mechanics, 1977, 9(4): 931-938. [29] 杨绍林, 卜一之, 崔闯, 等. U肋对接焊缝三维疲劳裂纹应力强度因子分析[J]. 桥梁建设, 2015, 45(5): 54-59. https://www.cnki.com.cn/Article/CJFDTOTAL-QLJS201505010.htmYANG Shao-lin, BU Yi-zhi, CUI Chuang, et al. Analysis of stress intensity factors of 3-dimensional fatigue crack in butt weld joint of U rib[J]. Bridge Construction, 2015, 45(5): 54-59. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-QLJS201505010.htm [30] GOSZ M, MORAN B. An interaction energy integral method for computation of mixed-mode stress intensity factors along non-planar crack fronts in three dimensions[J]. Engineering Fracture Mechanics, 2002, 69(3): 299-319. http://www.sciencedirect.com/science?_ob=ShoppingCartURL&_method=add&_eid=1-s2.0-S0013794401000807&originContentFamily=serial&_origin=article&_ts=1433023603&md5=7867a36f841f384e5b6e8e9813bc8ff9 -