留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

中、下承式拱桥悬吊桥面系强健性加固试验

陈康明 吴庆雄 罗健平 陈宝春 黄建华

陈康明, 吴庆雄, 罗健平, 陈宝春, 黄建华. 中、下承式拱桥悬吊桥面系强健性加固试验[J]. 交通运输工程学报, 2022, 22(6): 95-113. doi: 10.19818/j.cnki.1671-1637.2022.06.006
引用本文: 陈康明, 吴庆雄, 罗健平, 陈宝春, 黄建华. 中、下承式拱桥悬吊桥面系强健性加固试验[J]. 交通运输工程学报, 2022, 22(6): 95-113. doi: 10.19818/j.cnki.1671-1637.2022.06.006
CHEN Kang-ming, WU Qing-xiong, LUO Jian-ping, CHEN Bao-chun, HUANG Jian-hua. Test on robustness strengthening for suspended deck system in half-through and through arch bridges[J]. Journal of Traffic and Transportation Engineering, 2022, 22(6): 95-113. doi: 10.19818/j.cnki.1671-1637.2022.06.006
Citation: CHEN Kang-ming, WU Qing-xiong, LUO Jian-ping, CHEN Bao-chun, HUANG Jian-hua. Test on robustness strengthening for suspended deck system in half-through and through arch bridges[J]. Journal of Traffic and Transportation Engineering, 2022, 22(6): 95-113. doi: 10.19818/j.cnki.1671-1637.2022.06.006

中、下承式拱桥悬吊桥面系强健性加固试验

doi: 10.19818/j.cnki.1671-1637.2022.06.006
基金项目: 

国家重点研发计划 2017YFE0130300

国家自然科学基金项目 52078137

福建省自然科学基金项目 2019J06009

详细信息
    作者简介:

    陈康明(1985-),男,福建霞浦人,福州大学副研究员,工学博士,从事组合结构与钢结构桥梁研究

    通讯作者:

    吴庆雄(1973-),男,福建南靖人,福州大学研究员,工学博士

  • 中图分类号: U448.22

Test on robustness strengthening for suspended deck system in half-through and through arch bridges

Funds: 

National Key Research and Development Program of China 2017YFE0130300

National Natural Science Foundation of China 52078137

Natural Science Foundation of Fujian Province 2019J06009

More Information
    Author Bio:

    CHEN Kang-ming (1985–), male, native of Xiapu, Fujian, associate researcher at Fuzhou University, doctor of engineering. Research interest: combined structures and steel structure bridges. E-mail: chen-kang-ming@163.com

    WU Qing-xiong(1973-), male, professor, PhD, wuqingx@fzu.edu.cn

Article Text (Baidu Translation)
  • 摘要: 为增强中、下承式拱桥悬吊桥面系的强健性,以无纵桥向加劲梁的中、下承式拱桥悬吊桥面系为研究对象,提出了一种采用钢管桁架加劲纵梁的悬吊桥面系强健性加固结构,对比分析了悬吊桥面系强健性加固前后吊杆断裂时剩余结构的动力响应;开展了钢管桁架加劲纵梁强健性加固结构模型试验和有限元分析,研究了吊杆断裂后加固结构的受力性能与破坏模式;讨论了精轧螺纹钢筋预紧力、开孔钢板厚度和材质对强健性加固结构受力性能的影响。研究结果表明:采用钢管桁架加劲纵梁加固悬吊桥面系后,长(短)吊杆断裂时桥面系最大竖向位移与应力分别降低了1.30(1.31)和3.31(1.99)倍,与断裂吊杆相邻的吊杆的最大索力降低了1.25(1.25)倍;在弹塑性阶段,钢管桁架加劲纵梁加固结构的开孔钢板发生弯曲变形,横梁下排植筋破坏,达到极限荷载时,中间下侧加劲钢板与开孔钢板间的焊缝发生断裂,随后下弦管与开孔钢板间的焊缝出现开裂而丧失承载能力;精扎螺纹钢筋合理预紧力为50 kN,开孔钢板合理厚度为20 mm;开孔钢板的材质从Q235提高至Q345时加固结构极限荷载增加了11.9%,说明提高开孔钢板的材质强度可有效提高加固构造的极限承载力。综上所述,采用钢管桁架加劲纵梁加固中、下承式拱桥悬吊桥面系可有效增强其强健性。

     

  • 图  1  悬吊桥面系强健性加固结构

    Figure  1.  Robustness strengthening structure for suspended deck system

    图  2  实桥照片

    Figure  2.  Photos of actual bridge

    图  3  实桥总体布置(单位:cm)

    Figure  3.  General layout of actual bridge (unit: cm)

    图  4  实桥强健性加固构造(单位:cm)

    Figure  4.  Robustness strengthening structure of actual bridge (unit: cm)

    图  5  实桥钢管桁架加劲纵梁加固

    Figure  5.  Actual bridge strengthened by steel tubular truss stiffened longitudinal girder

    图  6  实桥ANSYS/LS-DYNA模型

    Figure  6.  ANSYS/LS-DYNA model of actual bridge

    图  7  吊杆断裂时的时间-荷载曲线

    Figure  7.  Time-load curve when hanger fractures

    图  8  断索模型试验

    Figure  8.  Hanger fracture model test

    图  9  吊杆断裂触发装置

    Figure  9.  Hanger fracture trigger devices

    图  10  吊杆断裂时试验与有限元位移时程曲线

    Figure  10.  Time history curves of test and finite element displacements when hangers fracture

    图  11  7#长吊杆断裂时结构的动力响应

    Figure  11.  Structure dynamic responses when 7# long hanger fractures

    图  12  1#短吊杆断裂时结构动力响应

    Figure  12.  Structure dynamic responses when 1# short hanger fractures

    图  13  吊杆断裂时结构变形

    Figure  13.  Structure deformations when hanger fractures

    图  14  试验模型构造(单位:cm)

    Figure  14.  Structure dimensions of test model (unit: cm)

    图  15  加载照片

    Figure  15.  Loading photos

    图  16  应变与位移测点布置

    Figure  16.  Monitoring point layouts of strain and displacement

    图  17  加劲纵梁有限元模型

    Figure  17.  Finite element model of stiffened longitudinal girder

    图  18  植筋与混凝土界面黏结滑移本构模型

    Figure  18.  Bond-slip constitutive model of interface between embedded steel rebar and concrete

    图  19  弹簧F-d曲线

    Figure  19.  F-d curve of spring

    图  20  有限元模型边界条件

    Figure  20.  Boundary conditions of finite element model

    图  21  荷载-位移曲线

    Figure  21.  Load-displacement curves

    图  22  试验模型破坏形态

    Figure  22.  Failure modes of test model

    图  23  4#开孔钢板相对于2#横梁纵向位移

    Figure  23.  Relative longitudinal displacements between 4# perforated steel plate and 2# cross beam

    图  24  开孔钢板变形

    Figure  24.  Deformations of perforated steel plated

    图  25  3#开孔钢板荷载-应力曲线

    Figure  25.  Load-stress curves of 3# perforated steel plate

    图  26  2#横梁精轧螺纹钢筋变形

    Figure  26.  Deformation of finish-rolled screw-thread steel bar in 2# cross beam

    图  27  2#横梁上排精扎螺纹钢筋荷载-应力曲线

    Figure  27.  Load-stress curves of finish-rolled screw-thread steel bar on top of 2# cross beam

    图  28  2#横梁下排精扎螺纹钢筋荷载-应力曲线

    Figure  28.  Load-stress curves of finish-rolled screw-thread steel bar on bottom of 2# cross beam

    图  29  植筋荷载-纵向位移曲线

    Figure  29.  Load-longitudinal displacement curve of embedded steel rebar

    图  30  2#横梁植筋编号

    Figure  30.  Numbers of embedded steel rebars in 2# cross beam

    图  31  植筋被拔出示意

    Figure  31.  Shematic of pulling out embedded steel rebars

    图  32  1#开孔钢板A点荷载-应力曲线

    Figure  32.  Load-stress curve of point A on 1# perforated steel plate

    图  33  1#开孔钢板应力云图

    Figure  33.  Stress nephogram of 1# perforated steel plate

    图  34  开孔钢板极限荷载-厚度曲线

    Figure  34.  Ultimate load-thickness curve of perforated steel plate

    图  35  开孔钢板材质强度影响

    Figure  35.  Influence of material strength of perforated steel plate

    1.  Robustness reinforcement structure of suspended deck system

    2.  Real bridge

    3.  General layout of real bridge (unit: cm)

    4.  Robustness reinforcement structure of real bridge (unit: cm)

    5.  Reinforced longitudinal girder of STT for real bridge

    6.  ANSYS/LS-DYNA model of real bridge

    7.  Time-load curve during hanger fracture

    8.  Rope breakage model test

    9.  Hanger fracture trigger device

    10.  Time history curves of test and finite element displacements during hanger fracture

    11.  Structural dynamic responses during long 7# hanger fracture

    12.  Structural dynamic responses during short 1# hanger fracture

    13.  Structural deformation during hanger fracture

    14.  Structure of test model (unit: cm)

    15.  Loading photos

    16.  Measurement point layouts of strain and displacement

    17.  Finite element model of reinforced longitudinal girder

    18.  Bond-slip constitutive model of interface between embedded steel rebar and concrete

    19.  F-d curve of spring

    20.  Boundary conditions of finite element model

    21.  Load-displacement curves

    22.  Damage modes of test model

    23.  Relative longitudinal displacements between 4# perforated steel plate and 2# transverse girder

    24.  Deformations of perforated steel plate

    25.  Load-stress curves of 3# perforated steel plate

    26.  Deformation of finely-rolled rebars in 2# transverse girder

    27.  Load-stress curves of finely-rolled rebars in upper row of 2# transverse girder

    28.  Load-stress curves of finely-rolled rebars in lower row of 2# transverse girder

    29.  Load-longitudinal displacement curve of embedded steel rebar

    30.  Number of embedded steel rebars in 2# transverse girder

    31.  Schematic of pulling out embedded steel rebars

    32.  Load-stress curve of point A on 1# perforated steel plate

    33.  Stress nephogram of 1# perforated steel plate

    34.  Ultimate load-thickness curve of perforated steel plate

    35.  Influence of material strength of perforated steel plate

    表  1  吊杆断裂时结构动力响应最大值

    Table  1.   Maximum values of structure dynamic responses when hangers fracture

    项目 7#吊杆断裂 1#吊杆断裂
    加固前 加固后 加固前 加固后
    拱肋位移/mm 5.70 3.80 3.39 3.17
    横梁位移/mm 49.80 38.19 46.32 35.35
    拱肋应力/MPa 2.29 1.66 4.26 4.21
    横梁应力/MPa 7.32 2.21 3.13 1.57
    与断裂吊杆相邻吊杆的吊杆力/kN 948 760 1 129 903
    下载: 导出CSV

    表  2  钢材材性参数

    Table  2.   Material property parameters of steel

    钢材 主管 支管1、2 支管3 开孔钢板 加劲板 精扎螺纹钢筋 植筋
    屈服应力/MPa 216.7 196.6 217.8 238.1 284.8 929.2 404.5
    泊松比 0.32 0.31 0.31 0.31 0.30 0.30 0.30
    下载: 导出CSV

    表  3  不同预紧力对应的极限荷载

    Table  3.   Ultimate loads corresponding to different preloads  kN

    初始预紧力 10 30 50 70 90
    极限荷载 292 477 496 510 516
    下载: 导出CSV

    1.   Maximum values of structural dynamic responses during hanger fracture

    2.   Material property parameters of steel

    3.   Ultimate loads corresponding to different prestressing forces unit: kN

  • [1] 范冰辉, 陈宝春, 吴庆雄. 考虑强健性的中、下承式拱桥技术状况评定[J]. 桥梁建设, 2018, 48(5): 64-68. doi: 10.3969/j.issn.1003-4722.2018.05.013

    FAN Bing-hui, CHEN Bao-chun, WU Qing-xiong. Technical condition evaluation of half-through and through arch bridges considering robustness[J]. Bridge Construction, 2018, 48(5): 64-68. (in Chinese) doi: 10.3969/j.issn.1003-4722.2018.05.013
    [2] 魏建东. 宜宾小南门大桥的抢修加固与恢复工程[J]. 公路, 2003(4): 34-38. https://www.cnki.com.cn/Article/CJFDTOTAL-GLGL200304009.htm

    WEI Jian-dong. Urgent reinforcement and restoration of Xiaonanmen Bridge in Yibin City[J]. Highway, 2003(4): 34-38. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GLGL200304009.htm
    [3] 余印根. 中、下承式拱桥悬吊桥面系强健性研究[D]. 福州: 福州大学, 2015.

    YU Yin-gen. Study on robustness of suspended floor system in half-through and through arch bridges[D]. Fuzhou: Fuzhou University, 2015. (in Chinese)
    [4] 陈宝春, 范冰辉, 余印根, 等. 钢管混凝土拱桥强健性设计[J]. 桥梁建设, 2016, 46(6): 88-93. https://www.cnki.com.cn/Article/CJFDTOTAL-QLJS201606018.htm

    CHEN Bao-chun, FAN Bing-hui, YU Yin-gen, et al. Robustness design of concrete-filled steel tube arch bridges[J]. Bridge Construction, 2016, 46(6): 88-93. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-QLJS201606018.htm
    [5] 赵虎, 蒲黔辉. 吊杆拱桥考虑结构缺陷及交通量增加的受力特性[J]. 重庆大学学报, 2014, 37(6): 25-32. https://www.cnki.com.cn/Article/CJFDTOTAL-FIVE201406004.htm

    ZHAO Hu, PU Qian-hui. Mechanical characteristics of tied-arch bridge under structural defects and traffic increase[J]. Journal of Chongqing University, 2014, 37(6): 25-32. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-FIVE201406004.htm
    [6] 杨建喜, 陈惟珍, 古锐. 拱桥短吊杆动力特性分析[J]. 桥梁建设, 2014, 44(3): 13-18. https://www.cnki.com.cn/Article/CJFDTOTAL-QLJS201403003.htm

    YANG Jian-xi, CHEN Wei-zhen, GU Rui. Analysis of dynamic characteristics of short hangers of arch bridge[J]. Bridge Construction, 2014, 44(3): 13-18. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-QLJS201403003.htm
    [7] MELLO L, LE Jia-liang, BALLARINI R. Numerical modeling of delayed progressive collapse of reinforced concrete structures[J]. Journal of Engineering Mechanics, 2020, 146(10): 04020113. doi: 10.1061/(ASCE)EM.1943-7889.0001843
    [8] HAN Xu, HAN Bing, XIE Hui-bing, et al. Seismic stability analysis of the large-span concrete-filled steel tube arch bridge considering the long-term effects[J]. Engineering Structures, 2022, 268: 114744. doi: 10.1016/j.engstruct.2022.114744
    [9] SHAO Guo-tao, JIN Hui, JIANG Rui-nian, et al. Dynamic response and robustness evaluation of cable-supported arch bridges subjected to cable breaking[J]. Shock and Vibration, 2021, 2021: 6689630.
    [10] 王兆铭, 胡香兰, 顾成凯, 等. 单根吊杆断裂时组合体系拱桥结构强健性研究[J]. 结构工程师, 2012, 28(3): 50-54. https://www.cnki.com.cn/Article/CJFDTOTAL-JGGC201203011.htm

    WANG Zhao-ming, HU Xiang-lan, GU Cheng-kai, et al. Research on structural robustness for single cable loss in combination system arched bridges[J]. Structural Engineers, 2012, 28(3): 50-54. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JGGC201203011.htm
    [11] 吴启明. 吊杆拱桥断索冲击效应的简化静力计算方法研究[J]. 中国水运, 2014, 14(4): 253-254. https://www.cnki.com.cn/Article/CJFDTOTAL-ZSUX201404110.htm

    WU Qi-ming. Research on simplified static calculation method of broken cable impact effect of suspender arch bridge[J]. China Water Transport, 2014, 14(4): 253-254. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZSUX201404110.htm
    [12] 吴庆雄, 余印根, 陈宝春. 下承式钢管混凝土刚架系杆拱桥吊杆断裂动力分析[J]. 振动与冲击, 2014, 33(15): 144-149. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ201415026.htm

    WU Qing-xiong, YU Yin-gen, CHEN Bao-chun. Dynamic analysis for cable loss of a rigid-frame tied through concrete-filled steel tubular arch bridge[J]. Journal of Vibration and Shock, 2014, 33(15): 144-149. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ201415026.htm
    [13] 滕军, 涂俊, 陈宜言, 等. 吊杆布置对拱桥破损安全性能的影响[J]. 工程抗震与加固改造, 2008, 30(6): 79-83. https://www.cnki.com.cn/Article/CJFDTOTAL-GCKZ200806015.htm

    TENG Jun, TU Jun, CHEN Yi-yan, et al. Analysis for failure safety of arch bridge with different disposal of suspenders[J]. Earthquake Resistant Engineering and Retrofitting, 2008, 30(6): 79-83. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GCKZ200806015.htm
    [14] 苏明星, 杨运平. 某钢管混凝土系杆拱桥吊杆断裂影响分析[J]. 世界桥梁, 2016, 44(6): 74-78. https://www.cnki.com.cn/Article/CJFDTOTAL-GWQL201606017.htm

    SU Ming-xing, YANG Yun-ping. Analysis of influence of fractured hangers on a bowstring concrete-filled steel tubular arch bridge[J]. World Bridges, 2016, 44(6): 74-78. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GWQL201606017.htm
    [15] WU Guang-run, QIU Wen-liang, WU Tian-yu. Nonlinear dynamic analysis of the self-anchored suspension bridge subjected to sudden breakage of a hanger[J]. Engineering Failure Analysis, 2019, 97: 701-717.
    [16] YHIM S S, KONG M S, YOO Y S. Dynamic analysis of long-span arch bridge by fracturing hangers[J]. Journal of the Korea Institute for Structural Maintenance and Inspection, 2010, 14(2): 113-120.
    [17] 彭桂瀚, 袁保星, 陈宝春. 加设钢管桁架纵梁改造中承式拱桥悬挂桥道系的应用研究[J]. 公路工程, 2009, 34(3): 109-114. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGL200903028.htm

    PENG Gui-han, YUAN Bao-xing, CHEN Bao-chun. Research on strengthening suspended deck system for half-through arch bridge by setting longitudinal steel-tubular trusses[J]. Highway Engineering, 2009, 34(3): 109-114. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGL200903028.htm
    [18] 王石磊, 高岩, 张勇. 以钢横梁受力为主的拱桥桥面系病害分析与加固方案探讨[J]. 铁道建筑, 2010, 50(6): 37-40. https://www.cnki.com.cn/Article/CJFDTOTAL-TDJZ201006016.htm

    WANG Shi-lei, GAO Yan, ZHANG Yong. Analysis of defects and reinforcement schemes of arch bridge deck system mainly stressed by steel crossbeam[J]. Railway Engineering, 2010, 50(6): 37-40. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TDJZ201006016.htm
    [19] 陈红. 丫髻沙大桥桥面系加固设计[J]. 桥梁建设, 2013, 43(2): 93-98. https://www.cnki.com.cn/Article/CJFDTOTAL-QLJS201302017.htm

    CHEN Hong. Strengthening design of floor system ofyajisha bridge[J]. Bridge Construction, 2013, 43(2): 93-98. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-QLJS201302017.htm
    [20] 林佳成. 中、下承式拱桥悬吊桥面系强健性设计计算方法研究[D]. 福州: 福州大学, 2020.

    LIN Jia-cheng. Study on the design and calculation method for the robustness of suspended floor system in half-through and through arch bridges[D]. Fuzhou: Fuzhou University, 2020. (in Chinese)
    [21] 王欢围. 中、下承式拱桥悬吊桥面系强健性试验研究[D]. 福州: 福州大学, 2018.

    WANG Huan-wei. Experimental study on robustness of suspended floor system in half-through and through arch bridges[D]. Fuzhou: Fuzhou University, 2018. (in Chinese)
    [22] 李祥龙, 杨阳, 栾龙发. 基于整体式模型的钢筋混凝土结构爆破拆除定向倒塌数值模拟[J]. 北京理工大学学报, 2013, 33(12): 1220-1223. https://www.cnki.com.cn/Article/CJFDTOTAL-BJLG201312002.htm

    LI Xiang-long, YANG Yang, LUAN Long-fa. Numerical simulation of reinforced concrete structure directional collapse by blasting demolition based on integral model[J]. Transactions of Beijing Institute of Technology, 2013, 33(12): 1220-1223. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-BJLG201312002.htm
    [23] 李小强, 孟庆阔, 杜一凡, 等. 拧紧策略对航空发动机单螺栓连接预紧力的影响[J]. 机械工程学报, 2020, 56(13): 231-241. https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB202013023.htm

    LI Xiao-qiang, MENG Qing-kuo, DU Yi-fan, et al. Influence of tightening strategy on pre-tightening force of aero-engine single-bolt connection[J]. Journal of Mechanical Engineering, 2020, 56(13): 231-241. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB202013023.htm
    [24] 王博, 白国良, 代慧娟, 等. 再生混凝土与钢筋粘结滑移性能的试验研究及力学分析[J]. 工程力学, 2013, 30(10): 54-64. https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX201310009.htm

    WANG Bo, BAI Guo-liang, DAI Hui-juan, et al. Experimental and mechanical analysis of bond-slip performance between recycled concrete and rebar[J]. Engineering Mechanics, 2013, 30(10): 54-64. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX201310009.htm
    [25] 赵军, 唐兴荣, 刘启真. 混凝土结构多筋植筋的锚固性能试验研究[J]. 苏州科技大学学报(工程技术版), 2020, 33(1): 29-33. https://www.cnki.com.cn/Article/CJFDTOTAL-SZCJ202001005.htm

    ZHAO Jun, TANG Xing-rong, LIU Qi-zhen. Experimental study on anchorage behavior of multi-bar reinforcement in concrete structures[J]. Journal of Suzhou University of Science and Technology (Engineering and Technology), 2020, 33(1): 29-33. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SZCJ202001005.htm
    [26] 苏伟强, 李婷, 朱虹, 等. 钢丝网砂浆层和附加肋提升嵌入式复材筋锚固性能试验研究[J]. 东南大学学报(自然科学版), 2018, 48(4): 692-698. https://www.cnki.com.cn/Article/CJFDTOTAL-DNDX201804015.htm

    SU Wei-qiang, LI Ting, ZHU Hong, et al. Experimental study on enhancement of the anchorage properties of NSM FRP bars using the wire mesh mortar layer and additional ribs[J]. Journal of Southeast University (Natural Science Edition), 2018, 48(4): 692-698. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DNDX201804015.htm
    [27] 尚守平, 黄新中, 杨甜. 快凝无机胶植筋锚固性能试验[J]. 建筑科学与工程学报, 2019, 36(1): 13-21. https://www.cnki.com.cn/Article/CJFDTOTAL-XBJG201901003.htm

    SHANG Shou-ping, HUANG Xin-zhong, YANG Tian. Experiment on anchorage performance of planting rebar with rapid-solidification inorganic adhesive[J]. Journal of Architecture and Civil Engineering, 2019, 36(1): 13-21. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XBJG201901003.htm
    [28] 郑山锁, 裴培, 张艺欣, 等. 钢筋混凝土粘结滑移研究综述[J]. 材料导报, 2018, 32(23): 4182-4191. https://www.cnki.com.cn/Article/CJFDTOTAL-CLDB201823020.htm

    ZHENG Shan-suo, PEI Pei, ZHANG Yi-xin, et al. Review of research on bond-slip of reinforced concrete[J]. Materials Reports, 2018, 32(23): 4182-4191. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-CLDB201823020.htm
    [29] 徐铨彪, 干钢, 陈刚. 外包钢加固钢筋混凝土框架梁受力性能分析[J]. 建筑结构学报, 2016, 37(12): 136-143. https://www.cnki.com.cn/Article/CJFDTOTAL-JZJB201612017.htm

    XU Quan-biao, GAN Gang, CHEN Gang. Analysis on mechanical behavior of RC frame beams encased with steel plate[J]. Journal of Building Structures, 2016, 37(12): 136-143. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JZJB201612017.htm
    [30] 刘小娟, 蒋欢军. 钢筋混凝土框架结构基于时变的抗震性能研究[J]. 建筑结构学报, 2019, 40(3): 134-141. https://www.cnki.com.cn/Article/CJFDTOTAL-JZJB201903014.htm

    LIU Xiao-juan, JIANG Huan-jun. Study on time-dependent seismic performance of reinforced concrete moment-resisting frame structures[J]. Journal of Building Structures, 2019, 40(3): 134-141. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JZJB201903014.htm
    [31] 万征, 孟达, 宋琛琛. 一种适用于岩土的扩展强度及屈服准则[J]. 力学学报, 2019, 51(5): 1545-1556. https://www.cnki.com.cn/Article/CJFDTOTAL-LXXB201905026.htm

    WAN Zheng, MENG Da, SONG Chen-chen. An extended strength and yield criterion for geomaterials[J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(5): 1545-1556. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-LXXB201905026.htm
    [32] GAO Dan-ying, YAN Huan-huan, FANG Dong, et al. Bond strength and prediction model for deformed bar embedded in hybrid fiber reinforced recycled aggregate concrete[J]. Construction and Building Materials, 2020, 265: 120337.
  • 加载中
图(70) / 表(6)
计量
  • 文章访问数:  916
  • HTML全文浏览量:  331
  • PDF下载量:  57
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-05-10
  • 刊出日期:  2022-12-25

目录

    /

    返回文章
    返回