Test on robustness strengthening for suspended deck system in half-through and through arch bridges
-
摘要: 为增强中、下承式拱桥悬吊桥面系的强健性,以无纵桥向加劲梁的中、下承式拱桥悬吊桥面系为研究对象,提出了一种采用钢管桁架加劲纵梁的悬吊桥面系强健性加固结构,对比分析了悬吊桥面系强健性加固前后吊杆断裂时剩余结构的动力响应;开展了钢管桁架加劲纵梁强健性加固结构模型试验和有限元分析,研究了吊杆断裂后加固结构的受力性能与破坏模式;讨论了精轧螺纹钢筋预紧力、开孔钢板厚度和材质对强健性加固结构受力性能的影响。研究结果表明:采用钢管桁架加劲纵梁加固悬吊桥面系后,长(短)吊杆断裂时桥面系最大竖向位移与应力分别降低了1.30(1.31)和3.31(1.99)倍,与断裂吊杆相邻的吊杆的最大索力降低了1.25(1.25)倍;在弹塑性阶段,钢管桁架加劲纵梁加固结构的开孔钢板发生弯曲变形,横梁下排植筋破坏,达到极限荷载时,中间下侧加劲钢板与开孔钢板间的焊缝发生断裂,随后下弦管与开孔钢板间的焊缝出现开裂而丧失承载能力;精扎螺纹钢筋合理预紧力为50 kN,开孔钢板合理厚度为20 mm;开孔钢板的材质从Q235提高至Q345时加固结构极限荷载增加了11.9%,说明提高开孔钢板的材质强度可有效提高加固构造的极限承载力。综上所述,采用钢管桁架加劲纵梁加固中、下承式拱桥悬吊桥面系可有效增强其强健性。Abstract: To enhance the robustness of the suspended deck system of half-through and through arch bridges, the suspended deck system of half-through and through arch bridges without a stiffening girder in the longitudinal direction of the bridges was taken as the research object, a robustness strengthening structure with a steel tubular truss (STT) stiffened longitudinal girder was proposed for the suspended deck system, and a comparative analysis was made on the dynamic responses of the remained structures at the moment of hanger fracture before and after the robustness strengthening of the suspended deck system. A test and a finite element analysis were conducted on the model of the robustness strengthening structure with an STT stiffened longitudinal girder, and the mechanical performance and failure mode of the strengthened structure after the hanger fracture were studied. The effects of the preload of finish-rolled screw-thread steel bar, the thickness of perforated steel plate, and the material on the mechanical performance of the robustness strengthening structure were discussed. Research results show that after the suspended deck system is strengthened by the STT stiffened longitudinal girder, the maximum vertical displacement and stress of the deck system reduce by 1.30(1.31) and 3.31(1.99) times, respectively, when the long (short) hanger fractures. The maximum cable force of the hanger adjacent to the fractured one reduces by 1.25 (1.25) times. In the elastic-plastic stage, the perforated steel plate of the structure strengthened by the STT stiffened longitudinal girder is subjected to bending deformation, and the embedded steel rebar near the bottom of the cross beam is damaged. When the ultimate load is reached, a crack appears on the weld between the middle-lower stiffened steel plate and the perforated steel plate. Then, a crack appears on the weld between the lower chord and the perforated steel plate, and the carrying capacity is thereby lost. The reasonable preload of the finish-rolled screw-thread steel bar is 50 kN, and the reasonable thickness of the perforated steel plate is 20 mm. The ultimate load of the strengthened structure increases by 11.9% when the material of the perforated steel plate is updated from Q235 to Q345. This indicates that enhancing the material strength of the perforated steel plate can effectively improve the ultimate bearing capacity of the strengthened structure. To sum up, utilizing the STT stiffened longitudinal girder to reinforce the suspended deck system in half-through and through arch bridges can effectively strengthen its robustness.
-
表 1 吊杆断裂时结构动力响应最大值
Table 1. Maximum values of structure dynamic responses when hangers fracture
项目 7#吊杆断裂 1#吊杆断裂 加固前 加固后 加固前 加固后 拱肋位移/mm 5.70 3.80 3.39 3.17 横梁位移/mm 49.80 38.19 46.32 35.35 拱肋应力/MPa 2.29 1.66 4.26 4.21 横梁应力/MPa 7.32 2.21 3.13 1.57 与断裂吊杆相邻吊杆的吊杆力/kN 948 760 1 129 903 表 2 钢材材性参数
Table 2. Material property parameters of steel
钢材 主管 支管1、2 支管3 开孔钢板 加劲板 精扎螺纹钢筋 植筋 屈服应力/MPa 216.7 196.6 217.8 238.1 284.8 929.2 404.5 泊松比 0.32 0.31 0.31 0.31 0.30 0.30 0.30 表 3 不同预紧力对应的极限荷载
Table 3. Ultimate loads corresponding to different preloads
kN 初始预紧力 10 30 50 70 90 极限荷载 292 477 496 510 516 1. Maximum values of structural dynamic responses during hanger fracture
2. Material property parameters of steel
3. Ultimate loads corresponding to different prestressing forces unit: kN
-
[1] 范冰辉, 陈宝春, 吴庆雄. 考虑强健性的中、下承式拱桥技术状况评定[J]. 桥梁建设, 2018, 48(5): 64-68. doi: 10.3969/j.issn.1003-4722.2018.05.013FAN Bing-hui, CHEN Bao-chun, WU Qing-xiong. Technical condition evaluation of half-through and through arch bridges considering robustness[J]. Bridge Construction, 2018, 48(5): 64-68. (in Chinese) doi: 10.3969/j.issn.1003-4722.2018.05.013 [2] 魏建东. 宜宾小南门大桥的抢修加固与恢复工程[J]. 公路, 2003(4): 34-38. https://www.cnki.com.cn/Article/CJFDTOTAL-GLGL200304009.htmWEI Jian-dong. Urgent reinforcement and restoration of Xiaonanmen Bridge in Yibin City[J]. Highway, 2003(4): 34-38. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GLGL200304009.htm [3] 余印根. 中、下承式拱桥悬吊桥面系强健性研究[D]. 福州: 福州大学, 2015.YU Yin-gen. Study on robustness of suspended floor system in half-through and through arch bridges[D]. Fuzhou: Fuzhou University, 2015. (in Chinese) [4] 陈宝春, 范冰辉, 余印根, 等. 钢管混凝土拱桥强健性设计[J]. 桥梁建设, 2016, 46(6): 88-93. https://www.cnki.com.cn/Article/CJFDTOTAL-QLJS201606018.htmCHEN Bao-chun, FAN Bing-hui, YU Yin-gen, et al. Robustness design of concrete-filled steel tube arch bridges[J]. Bridge Construction, 2016, 46(6): 88-93. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-QLJS201606018.htm [5] 赵虎, 蒲黔辉. 吊杆拱桥考虑结构缺陷及交通量增加的受力特性[J]. 重庆大学学报, 2014, 37(6): 25-32. https://www.cnki.com.cn/Article/CJFDTOTAL-FIVE201406004.htmZHAO Hu, PU Qian-hui. Mechanical characteristics of tied-arch bridge under structural defects and traffic increase[J]. Journal of Chongqing University, 2014, 37(6): 25-32. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-FIVE201406004.htm [6] 杨建喜, 陈惟珍, 古锐. 拱桥短吊杆动力特性分析[J]. 桥梁建设, 2014, 44(3): 13-18. https://www.cnki.com.cn/Article/CJFDTOTAL-QLJS201403003.htmYANG Jian-xi, CHEN Wei-zhen, GU Rui. Analysis of dynamic characteristics of short hangers of arch bridge[J]. Bridge Construction, 2014, 44(3): 13-18. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-QLJS201403003.htm [7] MELLO L, LE Jia-liang, BALLARINI R. Numerical modeling of delayed progressive collapse of reinforced concrete structures[J]. Journal of Engineering Mechanics, 2020, 146(10): 04020113. doi: 10.1061/(ASCE)EM.1943-7889.0001843 [8] HAN Xu, HAN Bing, XIE Hui-bing, et al. Seismic stability analysis of the large-span concrete-filled steel tube arch bridge considering the long-term effects[J]. Engineering Structures, 2022, 268: 114744. doi: 10.1016/j.engstruct.2022.114744 [9] SHAO Guo-tao, JIN Hui, JIANG Rui-nian, et al. Dynamic response and robustness evaluation of cable-supported arch bridges subjected to cable breaking[J]. Shock and Vibration, 2021, 2021: 6689630. [10] 王兆铭, 胡香兰, 顾成凯, 等. 单根吊杆断裂时组合体系拱桥结构强健性研究[J]. 结构工程师, 2012, 28(3): 50-54. https://www.cnki.com.cn/Article/CJFDTOTAL-JGGC201203011.htmWANG Zhao-ming, HU Xiang-lan, GU Cheng-kai, et al. Research on structural robustness for single cable loss in combination system arched bridges[J]. Structural Engineers, 2012, 28(3): 50-54. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JGGC201203011.htm [11] 吴启明. 吊杆拱桥断索冲击效应的简化静力计算方法研究[J]. 中国水运, 2014, 14(4): 253-254. https://www.cnki.com.cn/Article/CJFDTOTAL-ZSUX201404110.htmWU Qi-ming. Research on simplified static calculation method of broken cable impact effect of suspender arch bridge[J]. China Water Transport, 2014, 14(4): 253-254. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZSUX201404110.htm [12] 吴庆雄, 余印根, 陈宝春. 下承式钢管混凝土刚架系杆拱桥吊杆断裂动力分析[J]. 振动与冲击, 2014, 33(15): 144-149. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ201415026.htmWU Qing-xiong, YU Yin-gen, CHEN Bao-chun. Dynamic analysis for cable loss of a rigid-frame tied through concrete-filled steel tubular arch bridge[J]. Journal of Vibration and Shock, 2014, 33(15): 144-149. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ201415026.htm [13] 滕军, 涂俊, 陈宜言, 等. 吊杆布置对拱桥破损安全性能的影响[J]. 工程抗震与加固改造, 2008, 30(6): 79-83. https://www.cnki.com.cn/Article/CJFDTOTAL-GCKZ200806015.htmTENG Jun, TU Jun, CHEN Yi-yan, et al. Analysis for failure safety of arch bridge with different disposal of suspenders[J]. Earthquake Resistant Engineering and Retrofitting, 2008, 30(6): 79-83. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GCKZ200806015.htm [14] 苏明星, 杨运平. 某钢管混凝土系杆拱桥吊杆断裂影响分析[J]. 世界桥梁, 2016, 44(6): 74-78. https://www.cnki.com.cn/Article/CJFDTOTAL-GWQL201606017.htmSU Ming-xing, YANG Yun-ping. Analysis of influence of fractured hangers on a bowstring concrete-filled steel tubular arch bridge[J]. World Bridges, 2016, 44(6): 74-78. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GWQL201606017.htm [15] WU Guang-run, QIU Wen-liang, WU Tian-yu. Nonlinear dynamic analysis of the self-anchored suspension bridge subjected to sudden breakage of a hanger[J]. Engineering Failure Analysis, 2019, 97: 701-717. [16] YHIM S S, KONG M S, YOO Y S. Dynamic analysis of long-span arch bridge by fracturing hangers[J]. Journal of the Korea Institute for Structural Maintenance and Inspection, 2010, 14(2): 113-120. [17] 彭桂瀚, 袁保星, 陈宝春. 加设钢管桁架纵梁改造中承式拱桥悬挂桥道系的应用研究[J]. 公路工程, 2009, 34(3): 109-114. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGL200903028.htmPENG Gui-han, YUAN Bao-xing, CHEN Bao-chun. Research on strengthening suspended deck system for half-through arch bridge by setting longitudinal steel-tubular trusses[J]. Highway Engineering, 2009, 34(3): 109-114. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGL200903028.htm [18] 王石磊, 高岩, 张勇. 以钢横梁受力为主的拱桥桥面系病害分析与加固方案探讨[J]. 铁道建筑, 2010, 50(6): 37-40. https://www.cnki.com.cn/Article/CJFDTOTAL-TDJZ201006016.htmWANG Shi-lei, GAO Yan, ZHANG Yong. Analysis of defects and reinforcement schemes of arch bridge deck system mainly stressed by steel crossbeam[J]. Railway Engineering, 2010, 50(6): 37-40. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TDJZ201006016.htm [19] 陈红. 丫髻沙大桥桥面系加固设计[J]. 桥梁建设, 2013, 43(2): 93-98. https://www.cnki.com.cn/Article/CJFDTOTAL-QLJS201302017.htmCHEN Hong. Strengthening design of floor system ofyajisha bridge[J]. Bridge Construction, 2013, 43(2): 93-98. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-QLJS201302017.htm [20] 林佳成. 中、下承式拱桥悬吊桥面系强健性设计计算方法研究[D]. 福州: 福州大学, 2020.LIN Jia-cheng. Study on the design and calculation method for the robustness of suspended floor system in half-through and through arch bridges[D]. Fuzhou: Fuzhou University, 2020. (in Chinese) [21] 王欢围. 中、下承式拱桥悬吊桥面系强健性试验研究[D]. 福州: 福州大学, 2018.WANG Huan-wei. Experimental study on robustness of suspended floor system in half-through and through arch bridges[D]. Fuzhou: Fuzhou University, 2018. (in Chinese) [22] 李祥龙, 杨阳, 栾龙发. 基于整体式模型的钢筋混凝土结构爆破拆除定向倒塌数值模拟[J]. 北京理工大学学报, 2013, 33(12): 1220-1223. https://www.cnki.com.cn/Article/CJFDTOTAL-BJLG201312002.htmLI Xiang-long, YANG Yang, LUAN Long-fa. Numerical simulation of reinforced concrete structure directional collapse by blasting demolition based on integral model[J]. Transactions of Beijing Institute of Technology, 2013, 33(12): 1220-1223. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-BJLG201312002.htm [23] 李小强, 孟庆阔, 杜一凡, 等. 拧紧策略对航空发动机单螺栓连接预紧力的影响[J]. 机械工程学报, 2020, 56(13): 231-241. https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB202013023.htmLI Xiao-qiang, MENG Qing-kuo, DU Yi-fan, et al. Influence of tightening strategy on pre-tightening force of aero-engine single-bolt connection[J]. Journal of Mechanical Engineering, 2020, 56(13): 231-241. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB202013023.htm [24] 王博, 白国良, 代慧娟, 等. 再生混凝土与钢筋粘结滑移性能的试验研究及力学分析[J]. 工程力学, 2013, 30(10): 54-64. https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX201310009.htmWANG Bo, BAI Guo-liang, DAI Hui-juan, et al. Experimental and mechanical analysis of bond-slip performance between recycled concrete and rebar[J]. Engineering Mechanics, 2013, 30(10): 54-64. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX201310009.htm [25] 赵军, 唐兴荣, 刘启真. 混凝土结构多筋植筋的锚固性能试验研究[J]. 苏州科技大学学报(工程技术版), 2020, 33(1): 29-33. https://www.cnki.com.cn/Article/CJFDTOTAL-SZCJ202001005.htmZHAO Jun, TANG Xing-rong, LIU Qi-zhen. Experimental study on anchorage behavior of multi-bar reinforcement in concrete structures[J]. Journal of Suzhou University of Science and Technology (Engineering and Technology), 2020, 33(1): 29-33. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SZCJ202001005.htm [26] 苏伟强, 李婷, 朱虹, 等. 钢丝网砂浆层和附加肋提升嵌入式复材筋锚固性能试验研究[J]. 东南大学学报(自然科学版), 2018, 48(4): 692-698. https://www.cnki.com.cn/Article/CJFDTOTAL-DNDX201804015.htmSU Wei-qiang, LI Ting, ZHU Hong, et al. Experimental study on enhancement of the anchorage properties of NSM FRP bars using the wire mesh mortar layer and additional ribs[J]. Journal of Southeast University (Natural Science Edition), 2018, 48(4): 692-698. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DNDX201804015.htm [27] 尚守平, 黄新中, 杨甜. 快凝无机胶植筋锚固性能试验[J]. 建筑科学与工程学报, 2019, 36(1): 13-21. https://www.cnki.com.cn/Article/CJFDTOTAL-XBJG201901003.htmSHANG Shou-ping, HUANG Xin-zhong, YANG Tian. Experiment on anchorage performance of planting rebar with rapid-solidification inorganic adhesive[J]. Journal of Architecture and Civil Engineering, 2019, 36(1): 13-21. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XBJG201901003.htm [28] 郑山锁, 裴培, 张艺欣, 等. 钢筋混凝土粘结滑移研究综述[J]. 材料导报, 2018, 32(23): 4182-4191. https://www.cnki.com.cn/Article/CJFDTOTAL-CLDB201823020.htmZHENG Shan-suo, PEI Pei, ZHANG Yi-xin, et al. Review of research on bond-slip of reinforced concrete[J]. Materials Reports, 2018, 32(23): 4182-4191. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-CLDB201823020.htm [29] 徐铨彪, 干钢, 陈刚. 外包钢加固钢筋混凝土框架梁受力性能分析[J]. 建筑结构学报, 2016, 37(12): 136-143. https://www.cnki.com.cn/Article/CJFDTOTAL-JZJB201612017.htmXU Quan-biao, GAN Gang, CHEN Gang. Analysis on mechanical behavior of RC frame beams encased with steel plate[J]. Journal of Building Structures, 2016, 37(12): 136-143. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JZJB201612017.htm [30] 刘小娟, 蒋欢军. 钢筋混凝土框架结构基于时变的抗震性能研究[J]. 建筑结构学报, 2019, 40(3): 134-141. https://www.cnki.com.cn/Article/CJFDTOTAL-JZJB201903014.htmLIU Xiao-juan, JIANG Huan-jun. Study on time-dependent seismic performance of reinforced concrete moment-resisting frame structures[J]. Journal of Building Structures, 2019, 40(3): 134-141. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JZJB201903014.htm [31] 万征, 孟达, 宋琛琛. 一种适用于岩土的扩展强度及屈服准则[J]. 力学学报, 2019, 51(5): 1545-1556. https://www.cnki.com.cn/Article/CJFDTOTAL-LXXB201905026.htmWAN Zheng, MENG Da, SONG Chen-chen. An extended strength and yield criterion for geomaterials[J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(5): 1545-1556. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-LXXB201905026.htm [32] GAO Dan-ying, YAN Huan-huan, FANG Dong, et al. Bond strength and prediction model for deformed bar embedded in hybrid fiber reinforced recycled aggregate concrete[J]. Construction and Building Materials, 2020, 265: 120337. -