Diagonal cracking mechanism and reinforcement design method of bridge decks in cable-girder anchorage zone of composite girder cable-stayed bridge
-
摘要: 为揭示组合梁斜拉桥在悬拼施工时,索梁锚固区斜向裂缝的开裂机理,从实际受力状态出发,分析了该区域桥面板剪应力和正应力的分布特点,并结合应力莫尔圆理论给出了裂缝成因及其形态特征;基于相关规范及桁架模型,提出了斜向配筋和L形配筋设计的抗裂措施;通过台州湾跨海大桥实例分析,验证了锚固区桥面板的应力分布特点与配筋方法的有效性。研究结果表明:悬拼施工时,锚固区桥面板的面内剪应力主要由拉索索力的竖向分力和水平分力提供,纵、横桥向正应力主要由吊重荷载引起的斜拉桥整体弯矩、拉索索力增加引起的局部负弯矩和局部承压提供;纵桥向正应力的增加是引起索梁锚固区主拉应力变大的主要原因,当主拉应力大于混凝土抗拉强度时,桥面板存在较大的斜向开裂风险;考虑到局部承压的作用,裂缝一般首先出现在索梁锚固点附近的桥面板顶部;当逐渐远离锚固区时,局部负弯矩及局部承压影响减小,桥面板顶板正应力减小,主拉应力减小,裂缝的发展方向与纵桥向夹角逐渐减小,同时,桥面板底板正应力由压应力变成拉应力,主拉应力增大,裂缝产生贯通的可能性增大;基于混凝土板斜向开裂的桁架模型,对索梁锚固区配置L形抗裂钢筋,顶板最大主拉应力降低了1.26 MPa,其中,纵桥向正应力最大可减小0.91 MPa,面内剪应力可减小0.50 MPa,即配置抗裂钢筋能够达到一定的抗弯和抗剪的效果。Abstract: In order to reveal the cracking mechanism of diagonal cracks in the cable-girder anchorage zone during the cantilever erection of a composite girder cable-stayed bridge, the distribution characteristics of shear stress and normal stress of bridge decks in the zone were analyzed starting from the actual stress state. The formation cause and morphological characteristics of the cracks were obtained in light of the stress Mohr's circle theory. Depending on the relevant codes and truss model, the measures against cracks through the design of diagonal reinforcement and L-shaped reinforcement were proposed. The Taizhou Bay Oversea Bridge was taken as an example to verify the stress distribution characteristics of the bridge decks in the anchorage zone and the effectiveness of the reinforcement methods. Research results show that the in-plane shear stresses of the bridge decks in the anchorage zone are mainly provided by the vertical and horizontal components of the cable force during the cantilever erection. The normal stresses in the longitudinal and transverse directions of the bridge are mainly provided by the overall bending moment of the cable-stayed bridge due to the load from the lifting weight, the local negative bending moment caused by the increase of the cable force, and the local pressure. Among these stresses, the increase of the normal stress in the longitudinal direction of the bridge is the main reason for the increase of the principal tensile stress in the cable-girder anchorage zone. When the principal tensile stress is greater than the tensile strength of the concrete, bridge decks have a great risk of diagonal cracking. Considering the effect of local pressure, cracks generally first appear at the top of bridge decks near the cable-girder anchor point. When gradually away from the anchorage zone, the influences of local negative bending moment and local pressure decreases, thus the normal stress at the top plate of bridge decks, and the principal tensile stress, and the included angle between the development direction of the crack and the longitudinal direction of the bridge becomes smaller gradually. At the same time, the normal stress of the bottom plate of bridge decks changes from compressive stress to tensile stress, and the principal tensile stress increases, which enhances the possibility of crack penetration. With the use of the truss model of diagonal cracking of concrete slab, the L-shaped crack-resistant reinforcement is deployed in the cable-girder anchorage zone. The maximum principal tensile stress of the top plate reduces by 1.26 MPa, in which the maximum normal stress in the longitudinal direction of the bridge reduces by 0.91 MPa, and the in-plane shear stress reduces by 0.50 MPa. Therefore, the crack-resistant reinforcement is capable of resisting bending and shear to some extent.
-
表 1 6#、7#梁段索梁锚固区最大主拉应力点应力
Table 1. Stresses at maximum principal tensile stress points in cable-girder anchorage zones of 6# and 7# segments
MPa 应力 6#梁段索梁锚固区 7#梁段索梁锚固区 桥面板顶部 桥面板底部 桥面板顶部 桥面板底部 吊装前 吊装时 变化量 吊装前 吊装时 变化量 吊装前 吊装时 变化量 吊装前 吊装时 变化量 主拉应力 1.70 4.31 2.61 -0.14 0.29 0.43 2.17 4.34 2.17 -0.21 -0.07 0.14 纵桥向正应力 0.07 3.75 3.68 -3.22 -1.86 1.36 0.86 3.76 2.90 -2.77 -2.11 0.66 横桥向正应力 0.18 0.50 0.32 -1.86 -2.29 -0.43 0.49 0.69 0.20 -2.04 -2.74 -0.70 面内剪应力 -1.46 -1.45 0.01 -0.21 -0.36 -0.15 -1.48 -1.45 0.03 -0.27 0.05 0.32 表 2 索梁锚固区组合截面有效宽度
Table 2. Effective widths of composite cross section in cable-girder anchorage zone
m 截面位置 bec best besb 纵桥向 0.646 0.210 0.420 横桥向 1.580 0.577 1.872 表 3 配置抗裂钢筋前后顶底板应力
Table 3. Stresses of top and bottom plates of bridge deck with and without crack resistant reinforcement
MPa 应力 桥面板顶部 桥面板底部 无抗裂钢筋 有抗裂钢筋 差值 无抗裂钢筋 有抗裂钢筋 差值 主拉应力 4.34 3.08 -1.26 -0.07 -0.14 -0.07 纵桥向正应力 3.76 2.85 -0.91 -2.11 -2.16 -0.05 横桥向正应力 0.69 -0.21 -0.90 -2.74 -2.48 0.26 面内剪应力 -1.45 -0.84 0.61 0.05 0.03 -0.02 1. Stresses at maximum principal tensile stress points in cable-girder anchorage zones of 6# and 7# segments unit: MPa
2. Effective width of composite cross-section in cable-girder anchorage zone unit: m
3. Stresses of top and bottom plates with and without crack- resistant reinforcement unit: MPa
-
[1] 许波, 刘永健, 朱伟庆, 等. 焊钉锈蚀后钢-混组合梁抗弯承载力简化计算方法[J]. 交通运输工程学报, 2019, 19(2): 25-35. doi: 10.3969/j.issn.1671-1637.2019.02.003XU Bo, LIU Yong-jian, ZHU Wei-qing, et al. Simplified method of calculating flexural capacity of steel-concrete composite beam after stud corrosion[J]. Journal of Traffic and Transportation Engineering, 2019, 19(2): 25-35. (in Chinese) doi: 10.3969/j.issn.1671-1637.2019.02.003 [2] 段兰, 王春生, 朱经纬, 等. 带混凝土翼板的圆管上翼缘钢-混凝土组合梁抗弯性能[J]. 交通运输工程学报, 2019, 19(1): 48-59. doi: 10.19818/j.cnki.1671-1637.2019.01.006DUAN Lan, WANG Chun-sheng, ZHU Jing-wei, et al. Bending performance of circle tubular up-flange steel and concrete composite girder with concrete flange[J]. Journal of Traffic and Transportation Engineering, 2019, 19(1): 48-59. (in Chinese) doi: 10.19818/j.cnki.1671-1637.2019.01.006 [3] 王春生, 宋天诣, 冯亚成, 等. 高强钢-混凝土组合梁受力性能分析[J]. 交通运输工程学报, 2008, 8(2): 27-33. doi: 10.3321/j.issn:1671-1637.2008.02.007WANG Chun-sheng, SONG Tian-yi, FENG Ya-cheng, et al. Structural behavior analysis of high strength steel-concrete composite girders[J]. Journal of Traffic and Transportation Engineering, 2008, 8(2): 27-33. (in Chinese) doi: 10.3321/j.issn:1671-1637.2008.02.007 [4] 闫旭. 组合梁斜拉桥的技术发展[J]. 城市道桥与防洪, 2013(5): 53-55, 16. https://www.cnki.com.cn/Article/CJFDTOTAL-CSDQ201305018.htmYAN Xu. Technological development of combined beam cable- stayed bridge[J]. Urban Roads Bridges and Flood Control, 2013(5): 53-55, 16. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-CSDQ201305018.htm [5] 陈国红, 徐召. 大跨径钢-混组合梁斜拉桥主梁力学特性研究[J]. 桥梁建设, 2019, 49(5): 39-44. https://www.cnki.com.cn/Article/CJFDTOTAL-QLJS201905008.htmCHEN Guo-hong, XU Zhao. Study of mechanical property of main girder for long-span steel-concrete composite girder cable-stayed bridge[J]. Bridge Construction, 2019, 49(5): 39-44. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-QLJS201905008.htm [6] 邵长宇, 陈亮, 汤虎. 大跨径组合梁斜拉桥试设计及力学性能研究[J]. 桥梁建设, 2017, 47(4): 101-106.SHAO Chang-yu, CHEN Liang, TANG Hu. Study of trial design and mechanical performance of long span composite girder cable-stayed bridges[J]. Bridge Construction, 2017, 47(4): 101-106. (in Chinese) [7] 郑振, 黄铖. 大跨度迭合梁斜拉桥空间受力分析[J]. 福州大学学报(自然科学版), 2006, 34(1): 114-119. https://www.cnki.com.cn/Article/CJFDTOTAL-FZDZ200601028.htmZHENG Zhen, HUANG Cheng. Spatial analysis on the mechanical behaviors of steel-concrete composite beam of long-span cable-stayed bridge[J]. Journal of Fuzhou University (Natural Science), 2006, 34(1): 114-119. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-FZDZ200601028.htm [8] 林元培, 章曾焕. 混凝土-钢叠合梁斜拉桥裂缝探讨与对策[J]. 城市道桥与防洪, 1991(Z1): 7-14. https://www.cnki.com.cn/Article/CJFDTOTAL-CSDQ1991Z1001.htmLIN Yuan-pei, ZHANG Zeng-huan. Discussion and countermeasures on cracks of concrete-steel composite beam cable-stayed bridges[J]. Urban Roads Bridges and Flood Control, 1991(S1): 7-14. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-CSDQ1991Z1001.htm [9] 王德山, 桂水荣, 江金宜. 混凝土桥面板裂缝成因分析及处理措施研究[J]. 中外公路, 2012, 32(1): 179-181. https://www.cnki.com.cn/Article/CJFDTOTAL-GWGL201201040.htmWANG De-shan, GUI Shui-rong, JIANG Jin-yi. Study on the causes and treatment measures of cracks in concrete bridge deck[J]. Journal of China and Foreign Highway, 2012, 32(1): 179-181. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GWGL201201040.htm [10] 周旋, 贺耀北, 刘榕, 等. 钢-UHPC组合梁斜拉桥桥面板裂缝宽度计算方法研究[J]. 公路工程, 2021, 46(4): 110-117. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGL202104016.htmZHOU Xuan, HE Yao-bei, LIU Rong, et al. Study on calculation method of crack width for steel-UHPC composite beam cable-stayed bridge panel[J]. Highway Engineering, 2021, 46(4): 110-117. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGL202104016.htm [11] 刘双, 聂玉东, 张铭, 等. 钢-混组合梁斜拉桥现浇混凝土桥面板关键设计技术研究[J]. 公路, 2020, 65(7): 359-363. https://www.cnki.com.cn/Article/CJFDTOTAL-GLGL202007072.htmLIU Shuang, NIE Yu-dong, ZHANG Ming, et al. Research on key design technology of cast-in-situ concrete deck slab of steel-concrete composite girder cable-stayed bridge[J]. Highway, 2020, 65(7): 359-363. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GLGL202007072.htm [12] 宋冰泉, 王晓阳, 刘晟. 清水浦大桥钢-混组合梁混凝土桥面板防裂技术[J]. 世界桥梁, 2013, 41(4): 26-29, 34. https://www.cnki.com.cn/Article/CJFDTOTAL-GWQL201304005.htmSONG Bing-quan, WANG Xiao-yang, LIU Sheng. Cracking control technique for concrete slab of steel-concrete composite girder of Qingshuipu Bridge[J]. World Bridges, 2013, 41(4): 26-29, 34. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GWQL201304005.htm [13] 蔡邦国, 邱国阳, 谈华顺. 组合梁斜拉桥桥面板纵向抗裂措施研究[J]. 世界桥梁, 2019, 47(3): 44-48. https://www.cnki.com.cn/Article/CJFDTOTAL-GWQL201903009.htmCAI Bang-guo, QIU Guo-yang, TAN Hua-shun. Study of measures to treat longitudinal cracking in deck slabs of composite girder cable-stayed bridge[J]. World Bridges, 2019, 47(3): 44-48. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GWQL201903009.htm [14] 邱国阳, 陈智寿, 蔡邦国, 等. 桥面板干湿混合接缝在组合梁斜拉桥中的应用研究[J]. 世界桥梁, 2019, 47(6): 74-79. https://www.cnki.com.cn/Article/CJFDTOTAL-GWQL201906016.htmQIU Guo-yang, CHEN Zhi-shou, CAI Bang-guo, et al. Study of application of hybrid dry-wet joints in deck slabs to composite girder cable-stayed bridge[J]. World Bridges, 2019, 47(6): 74-79. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GWQL201906016.htm [15] 曹明明, 韩洋洋. 组合梁斜拉桥增加辅助墩处桥面板压应力的技术[J]. 桥梁建设, 2019, 49(S1): 86-91. https://www.cnki.com.cn/Article/CJFDTOTAL-QLJS2019S1015.htmCAO Ming-ming, HAN Yang-yang. Technique to increase compressive stress in bridge deck at auxiliary piers of composite girder cable-stayed bridge[J]. Bridge Construction, 2019, 49(S1): 86-91. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-QLJS2019S1015.htm [16] 宋福春, 刘帅, 王依琳, 等. 基于后结合法的钢-混组合连续梁桥负弯矩区阻裂方法[J]. 沈阳建筑大学学报(自然科学版), 2022, 38(2): 288-295. https://www.cnki.com.cn/Article/CJFDTOTAL-SYJZ202202012.htmSONG Fu-chun, LIU Shuai, WANG Yi-lin, et al. Crack resistance method of negative bending moment region for steel-concrete composite continuous beam bridge based on post-combination method[J]. Journal of Shenyang Jianzhu University (Natural Science), 2022, 38(2): 288-295. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SYJZ202202012.htm [17] 聂鑫, 薛志超, 庄亮东, 等. 大跨钢-混组合连续梁桥负弯矩区桥面板抗裂技术研究[J]. 桥梁建设, 2022, 52(4): 24-31. https://www.cnki.com.cn/Article/CJFDTOTAL-QLJS202204004.htmNIE Xin, XUE Zhi-chao, ZHUANG Liang-dong, et al. Research on anti-cracking techniques for deck in negative bending moment zone of long-span continuous steel-concrete composite girder bridge[J]. Bridge Construction, 2022, 52(4): 24-31. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-QLJS202204004.htm [18] 卫星, 强士中. 大跨钢-混凝土结合梁斜拉桥传力机理[J]. 西南交通大学学报, 2013, 48(3): 402-408. https://www.cnki.com.cn/Article/CJFDTOTAL-XNJT201303003.htmWEI Xing, QIANG Shi-zhong. Mechanic behavior of steel-concrete composite girder of long-span cable-stayed bridge[J]. Journal of Southwest Jiaotong University, 2013, 48(3): 402-408. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XNJT201303003.htm [19] PU Qian-hui, BAI Guang-liang. Internal force distribution in steel-concrete composite structure for pylon of cable-stayed bridge[J]. Journal of Southwest Jiaotong University (English Edition), 2009, 17(2): 95-101. [20] 雷宇, 赵雷, 黎曦. 大跨度组合梁斜拉桥极限承载力影响因素分析[J]. 西南交通大学学报, 2009, 44(6): 812-816. https://www.cnki.com.cn/Article/CJFDTOTAL-XNJT200906004.htmLEI Yu, ZHAO Lei, LI Xi. Influencing factors of ultimate load-bearing capacity of long-span composite girder cable-stayed bridge[J]. Journal of Southwest Jiaotong University, 2009, 44(6): 812-816. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XNJT200906004.htm [21] OLIVEIRA PEDRO J J, REIS A J. Nonlinear analysis of composite steel-concrete cable-stayed bridges[J]. Engineering Structures, 2010, 32(9): 2702-2716. [22] ELGAALY M, SESHADRI A, HAMILTON R W. Bending strength of steel beams with corrugated webs[J]. Journal of Structural Engineering, 1997, 123(6): 772-782. [23] ELGAALY M, HAMILTON R W, SESHADRI A. Shear strength of beams with corrugated webs[J]. Journal of Structural Engineering, 1996, 122(4): 390-398. [24] HE Jun, WANG Si-hao, LIU Yu-qing, et al. Mechanical behavior of a partially encased composite girder with corrugated steel web: interaction of shear and bending[J]. Engineering, 2017, 3(6): 806-816. [25] 胡少伟, 叶祥飞. 预应力连续组合梁负弯矩区抗弯承载力分析[J]. 工程力学, 2013, 30(11): 160-165. https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX201311025.htmHU Shao-wei, YE Xiang-fei. Analysis on the bending capacity of the negative-moment region in prestressed continuous composite beams[J]. Engineering Mechanics, 2013, 30(11): 160-165. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX201311025.htm [26] 韩春秀, 周东华, 陈旭, 等. 基于内力分配法的组合梁徐变应力重分布实用计算[J]. 四川大学学报(工程科学版), 2014, 46(5): 58-65. https://www.cnki.com.cn/Article/CJFDTOTAL-SCLH201405009.htmHAN Chun-xiu, ZHOU Dong-hua, CHEN Xu, et al. Practical calculation of creep stress redistribution on composite beams based on internal forces distribution method[J]. Journal of Sichuan University (Engineering Science Edition), 2014, 46(5): 58-65. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SCLH201405009.htm [27] JOHNSON R P, OEHLERS D J. Analysis and design for longitudinal shear in composite T-beams[J]. Proceedings of the Institution of Civil Engineers, 1981, 71(4): 989-1021. http://www.onacademic.com/detail/journal_1000039633530810_355f.html [28] 刘永颐, 关建光, 王传志. 混凝土局部承压强度及破坏机理[J]. 土木工程学报, 1985, 18(2): 55-65. https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC198502004.htmLIU Yong-yi, GUAN Jian-guang, WANG Chuan-zhi. Bearing strength of concrete and it's failure mechanism[J]. China Civil Engineering Journal, 1985, 18(2): 55-65. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC198502004.htm [29] 孙立鹏, 刘永健, 杨岳华, 等. 台州湾跨海大桥通航孔桥悬拼匹配关键问题研究[J]. 桥梁建设, 2018, 48(6): 116-121. https://www.cnki.com.cn/Article/CJFDTOTAL-QLJS201806023.htmSUN Li-peng, LIU Yong-jian, YANG Yue-hua, et al. Research on key problems of matching technology in cantilever erection of navigation opening bridge of Taizhou Bay Cross-Sea Bridge[J]. Bridge Construction, 2018, 48(6): 116-121. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-QLJS201806023.htm [30] 杨岳华. 宽幅组合梁斜拉桥主梁节段预制与安装力学性能研究[D]. 西安: 长安大学, 2017.YANG Yue-hua. Research on mechanical properties of girder segment during precast and installation in composite cable stayed bridge with wide width[D]. Xi'an: Chang'an University, 2017. (in Chinese) -