Mechanical performance and design calculation method of prefabricated voided slab bridge with transverse post-tensioning
-
摘要: 为了提高铰缝结合面的开裂荷载和破坏荷载,解决空心板桥横桥向受力问题,研究了采用横向预应力的装配式空心板桥的受力性能,采用局部模型试验的方法分析了铰缝结合面受力机理,采用足尺模型试验的方法研究了空心板桥整体受力性能,并基于铰缝结合面受力机理,确定了横向预应力的上、下限,进而提出了横向预应力设计计算公式。试验结果表明:采用横向预应力结合面的法向和切向黏结强度分别为1.40~1.45和0.50~0.62 MPa,较未采用横向预应力分别提高了8.1%~12.5%和12.4%~38.3%,而且提高横向预应力可以提高结合面的法向和切向黏结强度;采用横向预应力的空心板桥足尺试验模型的破坏模式表现为空心板的开裂破坏,试验过程中未出现铰缝开裂现象;横向预应力的施加可以提高空心板之间的横桥向联系,避免结构由于铰缝结合面损伤而丧失横向传递荷载的能力并导致结构破坏,提高空心板桥的极限荷载;提出的横向预应力设计计算公式可以较好地计算空心板桥横向预应力的设计值。Abstract: In order to improve the crack load and failure load of the hinge joint junction surface and solve the problem of the transverse force of the voided slab bridge, the mechanical performance of the prefabricated voided slab bridge with transverse post-tensioning (TPT)was studied. The mechanical mechanism of the hinge joint junction surface was analyzed by a local model test. The full-scale model test was adopted to research the overall mechanical performance of the voided slab bridge. Based on the mechanical mechanism of the hinge joint junction surface, the upper and lower limits of TPT were determined, and the design calculation formula of TPT was put forward. Test results show that the normal and tangential bonding strengths of the junction surface with TPT are 1.40-1.45 and 0.50-0.62 MPa, respectively, which are 8.1%-12.5% and 12.4%-38.3% higher than those without TPT, respectively. Moreover, increasing TPT can improve the normal and tangential bonding strengths of the junction surface. The failure mode of the full-scale test model of the voided slab bridge with TPT is the cracking failure of the voided slab, and no hinge joint cracking occurs during the test. The application of TPT can improve the transverse connection among slabs, avoid the loss of the transverse load transmitting ability due to the hinge joint junction surface damage and the failure of the structure, and increase the ultimate load of the voided slab bridge. The proposed formula for TPT design can effectively calculate the design value of TPT of the voided slab bridge.
-
表 1 局部模型试验试件分组
Table 1. Specimen grouping of local model test
序号 试件编号 极限状态 横向预应力P/kN 1 WS-1-1~WS-1-3 法向 0 2 WS-2-1~WS-2-3 40 3 WS-3-1~WS-3-3 50 4 WS-4-1~WS-4-3 70 5 JS-1-1~JS-1-3 切向 0 6 JS-2-1~JS-2-3 40 7 JS-3-1~JS-3-3 50 8 JS-4-1~JS-4-3 70 表 2 抗弯试验结果
Table 2. Bending test result
试件编号 Mc/(kN·m) ft/MPa ft/ftw 实测值 有效值 实测值 有效值 WS-1-1 10.3 1.42 1.29 0.43 0.39 WS-1-2 10.0 1.38 0.42 WS-1-3 9.5 1.31 0.40 WS-2-1 11.0 1.52 1.40 0.46 0.43 WS-2-2 11.4 1.57 0.48 WS-2-3 10.3 1.42 0.43 WS-3-1 11.2 1.54 1.45 0.47 0.44 WS-3-2 11.6 1.60 0.49 WS-3-3 10.7 1.47 0.45 WS-4-1 10.7 1.47 1.44 0.45 0.44 WS-4-2 10.9 1.50 0.46 WS-4-3 11.5 1.58 0.48 表 3 抗剪试验结果
Table 3. Shearing test result
试件编号 Vc/kN fv/MPa fv/fcw 实测值 有效值 实测值 有效值 JS-1-1 75 0.52 0.45 0.018 0.015 JS-1-2 66 0.46 0.016 JS-1-3 70 0.49 0.017 JS-2-1 77 0.53 0.50 0.019 0.017 JS-2-2 74 0.51 0.018 JS-2-3 82 0.57 0.020 JS-3-1 80 0.56 0.53 0.019 0.018 JS-3-2 83 0.58 0.020 JS-3-3 92 0.64 0.022 JS-4-1 90 0.63 0.62 0.022 0.021 JS-4-2 95 0.66 0.023 JS-4-3 98 0.68 0.024 表 4 未采用与采用横向预应力的试验现象对比
Table 4. Comparison of test phenomena with and without TPT
荷载/kN 未采用横向预应力 采用横向预应力 70 结合面开裂 80 空心板跨中截面开裂 140 结合面通缝形成,单板受力并失去承载能力 3#空心板板底应变测点因混凝土开裂而失效 240 跨中截面板底混凝土应变测点全部失效 380 空心板出现大量通缝,失去承载能力,未发现结合面开裂 表 5 实测与计算结果比较
Table 5. Comparison between test and calculated results
序号 测点位置 实测挠度/mm 计算挠度/mm 校验系数 1 1#空心板跨中 1.57 1.96 0.80 2 2#空心板跨中 1.50 2.27 0.66 3 3#空心板跨中 1.41 2.36 0.60 4 4#空心板跨中 1.47 2.27 0.65 5 5#空心板跨中 1.52 1.96 0.78 表 6 有限元模型参数
Table 6. Parameters of finite element model
参数 参数取值 跨径/m 10、13、16、20 桥宽/m 8、10、12、14、16、18、20 表 7 跨径10 m空心板桥计算结果
Table 7. Calculated result of 10 m-span voided slab bridge
桥宽/m 最不利正弯矩控制/kN 最不利负弯矩控制/kN 预应力设计/kN 底缘控制 顶缘控制 底缘控制 顶缘控制 下限 上限 8 413 1 920 1 767 566 566 1 767 10 616 1 717 1 578 755 755 1 578 12 737 1 596 1 601 732 737 1 596 14 794 1 538 1 681 652 794 1 538 16 822 1 511 1 782 551 822 1 511 18 835 1 498 1 887 446 835 1 498 20 844 1 489 1 835 498 844 1 489 表 8 跨径13 m空心板桥计算结果
Table 8. Calculated result of 13 m-span voided slab bridge
桥宽/m 最不利正弯矩控制/kN 最不利负弯矩控制/kN 预应力设计/kN 底缘控制 顶缘控制 底缘控制 顶缘控制 下限 上限 8 331 2 390 2 241 481 481 2 241 10 520 2 202 2 061 661 661 2 061 12 661 2 060 1 963 758 758 1 963 14 758 1 964 1 927 795 795 1 927 16 822 1 900 1 941 781 822 1 900 18 860 1 862 2 000 722 860 1 862 20 884 1 838 2 069 653 884 1 838 表 9 跨径16 m空心板桥计算结果
Table 9. Calculated result of 16 m-span voided slab bridge
桥宽/m 最不利正弯矩控制/kN 最不利负弯矩控制/kN 预应力设计/kN 底缘控制 顶缘控制 底缘控制 顶缘控制 下限 上限 8 293 2 818 2 668 443 443 2 668 10 462 2 648 2 513 598 598 2 513 12 598 2 513 2 396 715 715 2 396 14 707 2 404 2 320 791 791 2 320 16 790 2 321 2 285 826 826 2 285 18 850 2 260 2 286 825 850 2 260 20 891 2 220 2 316 795 891 2 220 表 10 跨径20 m空心板桥计算结果
Table 10. Calculated result of 20 m-span voided slab bridge
桥宽/m 最不利正弯矩控制/kN 最不利负弯矩控制/kN 预应力设计/kN 底缘控制 顶缘控制 底缘控制 顶缘控制 下限 上限 8 244 3 449 3 324 370 370 3 324 10 389 3 305 3 186 508 508 3 186 12 510 3 184 3 067 626 626 3 067 14 615 3 079 2 973 721 721 2 973 16 701 2 993 2 904 790 790 2 904 18 773 2 921 2 865 829 829 2 865 20 829 2 865 2 852 842 842 2 852 1. Specimen grouping of local model test
2. Bending test result
3. Shearing test result
4. Comparison of test phenomena with and without TPT
5. Comparison between test and calculated results
6. Parameters of finite element model
7. Calculated result of voided slab bridge with a span of 10 m
8. Calculated result of voided slab bridge with a span of 13 m
9. Calculated result of voided slab bridge with a span of 16 m
10. Calculated result of voided slab bridge with a span of 20 m
-
[1] 吴庆雄, 陈悦驰, 陈康明. 结合面底部带门式钢筋的铰接空心板破坏模式分析[J]. 交通运输工程学报, 2015, 15(5): 15-25. doi: 10.3969/j.issn.1671-1637.2015.05.003WU Qing-xiong, CHEN Yue-chi, CHEN Kang-ming. Failure mode analysis of hinged voided slab with gate-type steel rebars at bottom of junction surface[J]. Journal of Traffic and Transportation Engineering, 2015, 15(5): 15-25. (in Chinese) doi: 10.3969/j.issn.1671-1637.2015.05.003 [2] 吴庆雄, 黄宛昆, 陈宝春, 等. 结合面底部设开孔钢板的铰接空心板力学性能[J]. 交通运输工程学报, 2017, 17(4): 45-54. doi: 10.3969/j.issn.1671-1637.2017.04.005WU Qing-xiong, HUANG Wan-kun, CHEN Bao-chun, et al. Mechanical property of hinged voided slab with perforated steel plates at bottom of junction surface[J]. Journal of Traffic and Transportation Engineering, 2017, 17(4): 45-54. (in Chinese) doi: 10.3969/j.issn.1671-1637.2017.04.005 [3] HUSSEIN H H, WALSH K K, SARGAND S M, et al. Interfacial properties of ultrahigh-performance concrete and high-strength concrete bridge connections[J]. Journal of Materials in Civil Engineering, 2016, 28(5): 04015208. doi: 10.1061/(ASCE)MT.1943-5533.0001456 [4] 冷艳玲, 张劲泉, 程寿山, 等. 装配式混凝土空心板梁桥单板受力问题的数值解析[J]. 公路交通科技, 2013, 30(5): 63-66, 73. doi: 10.3969/j.issn.1002-0268.2013.05.011LENG Yan-ling, ZHANG Jin-quan, CHENG Shou-shan, et al. Numerical analysis on single plate loading effect of precast hollow plate girder bridge[J]. Journal of Highway and Transportation Research and Development, 2013, 30(5): 63-66, 73. (in Chinese) doi: 10.3969/j.issn.1002-0268.2013.05.011 [5] 卫军, 李沛, 徐岳, 等. 空心板铰缝协同工作性能影响因素分析[J]. 中国公路学报, 2011, 24(2): 29-33. doi: 10.3969/j.issn.1001-7372.2011.02.006WEI Jun, LI Pei, XU Yue, et al. Influencing factor analysis on coordinated working performance of hinge joint in hollow slab[J]. China Journal of Highway and Transport, 2011, 24(2): 29-33. (in Chinese) doi: 10.3969/j.issn.1001-7372.2011.02.006 [6] 王玉田, 姜福香, 李福如. 铰缝损伤对斜交空心板桥自振特性的影响[J]. 公路, 2014, 59(3): 48-53. https://www.cnki.com.cn/Article/CJFDTOTAL-GLGL201403013.htmWANG Yu-tian, JIANG Fu-xiang, LI Fu-ru. Influence of hinge joint damage on the self-vibration characteristics of skew hollow slab bridge[J]. Highway, 2014, 59(3): 48-53. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GLGL201403013.htm [7] 吴庆雄, 黄宛昆, 王渠, 等. 新型装配式倒T形空心板桥受力性能[J]. 交通运输工程学报, 2019, 19(4): 12-23. doi: 10.3969/j.issn.1671-1637.2019.04.002WU Qing-xiong, HUANG Wan-kun, WANG Qu, et al. Mechanical property of new type of prefabricated inverted T-shape voided slab bridge[J]. Journal of Traffic and Transportation Engineering, 2019, 19(4): 12-23. (in Chinese) doi: 10.3969/j.issn.1671-1637.2019.04.002 [8] HUSSEIN H H, SARGAND S M, STEINBERG E P. Shape optimization of UHPC shear keys for precast, prestressed, adjacent box-girder bridges[J]. Journal of Bridge Engineering, 2018, 23(4): 04018009. doi: 10.1061/(ASCE)BE.1943-5592.0001220 [9] 韩智强, 郭茂泉, 晋民杰, 等. 装配式空心板体外横向预应力加固力学性能研究[J]. 中外公路, 2021, 41(3): 171-174. doi: 10.14048/j.issn.1671-2579.2021.03.035HAN Zhi-qiang, GUO Mao-quan, JIN Min-jie, et al. Study on mechanical properties of exterior transverse prestressed reinforcement of prefabricated hollow slabs[J]. Journal of China and Foreign Highway, 2021, 41(3): 171-174. (in Chinese) doi: 10.14048/j.issn.1671-2579.2021.03.035 [10] HUSSEIN H H, SARGAND S M, AL-JHAYYISH A K, et al. Contribution of transverse tie bars to load transfer in adjacent prestressed box-girder bridges with partial depth shear key[J]. Journal of Performance of Constructed Facilities, 2017, 31(2): 04016100. doi: 10.1061/(ASCE)CF.1943-5509.0000973 [11] 潘钻峰, CHUNG C F, 吕志涛. 装配式板桥的横向预应力设计[J]. 东南大学学报(自然科学版), 2010, 40(6): 1264-1270. https://www.cnki.com.cn/Article/CJFDTOTAL-DNDX201006027.htmPAN Zuan-feng, CHUNG C F, LYU Zhi-tao. Study on transverse post-tensioning in assembly slab bridges[J]. Journal of Southeast University (Natural Science Edition), 2010, 40(6): 1264-1270. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DNDX201006027.htm [12] EL-REMAILY A, TADROS M K, YAMANE T, et al. Transverse design of adjacent precast prestressed concrete box girder bridges[J]. PCI Journal, 1996, 41(4): 96-113. doi: 10.15554/pcij.07011996.96.113 [13] YAMANE T, TADROS M K, ARUMUGASAMY P. Short to medium span precast prestressed concrete bridges in Japan[J]. PCI Journal, 1994, 39(2): 74-100. doi: 10.15554/pcij.03011994.74.100 [14] LALL J, ALAMPALLI S, DICOCCO E. Performance of full-depth shear keys in adjacent prestressed box beam bridges[J]. PCI Journal, 1998, 43(2): 72-79. doi: 10.15554/pcij.03011998.72.79 [15] 吕思忠, 章清涛, 王晓然, 等. 20 m跨径的横向张拉装配式空心板桥试设计研究[J]. 水利与建筑工程学报, 2022, 20(3): 134-139. doi: 10.3969/j.issn.1672-1144.2022.03.021LYU Si-zhong, ZHANG Qing-tao, WANG Xiao-ran, et al. Trial-design of 20 m span prefabricated voided slab bridge with transverse post-tensioning[J]. Journal of Water Resources and Architectural Engineering, 2022, 20(3): 134-139. (in Chinese) doi: 10.3969/j.issn.1672-1144.2022.03.021 [16] STEINBERG E P, SEMENDARY A A. Evaluation of transverse tie rods in a 50-year-old adjacent prestressed concrete box beam bridge[J]. Journal of Bridge Engineering, 2017, 22(3): 05016010. doi: 10.1061/(ASCE)BE.1943-5592.0001001 [17] GRACE N F, JENSEN E A, BEBAWY M R. Transverse post-tensioning arrangement for side-by-side box-beam bridges[J]. PCI Journal, 2012, 57(2): 48-63. doi: 10.15554/pcij.03012012.48.63 [18] HUSSEIN H H, SARGAND S M, AL RIKABI F T, et al. Laboratory evaluation of ultrahigh-performance concrete shear key for prestressed adjacent precast concrete box girder bridges[J]. Journal of Bridge Engineering, 2017, 22(2): 04016113. doi: 10.1061/(ASCE)BE.1943-5592.0000987 [19] HUSSEIN H H, SARGAND S M, KHOURY I, et al. Environment-induced behavior of transverse tie bars in adjacent prestressed box-girder bridges with partial depth shear keys[J]. Journal of Performance of Constructed Facilities, 2017, 31(5): 1-13. [20] 邹兰林, 蔡睿, 周兴林, 等. 装配式斜交空心板桥横向预应力加固[J]. 武汉科技大学学报, 2019, 42(6): 474-477. doi: 10.3969/j.issn.1674-3644.2019.06.012ZOU Lan-lin, CAI Rui, ZHOU Xing-lin, et al. Reinforcement of prefabricated skew hollow slab bridge by transverse prestressing[J]. Journal of Wuhan University of Science and Technology, 2019, 42(6): 474-477. (in Chinese) doi: 10.3969/j.issn.1674-3644.2019.06.012 [21] 陈淮, 张云娜. 施加横向预应力加固装配式空心板桥研究[J]. 公路交通科技, 2008, 25(10): 58-62. doi: 10.3969/j.issn.1002-0268.2008.10.013CHEN Huai, ZHANG Yun-na. Research on strengthening fabricated hollow slab bridge by applying transverse prestress[J]. Journal of Highway and Transportation Research and Development, 2008, 25(10): 58-62. (in Chinese) doi: 10.3969/j.issn.1002-0268.2008.10.013 [22] ANNAMALAI G, CLARKE A, GERSTLE K H. Shear strength of post-tensioned grouted keyed connections[J]. PCI Journal, 1990, 35(3): 64-73. doi: 10.15554/pcij.05011990.64.73 [23] 宋尧, 许健. 装配式空心板桥板间铰缝破坏加固方法研究[J]. 中外公路, 2016, 36(3): 216-220. https://www.cnki.com.cn/Article/CJFDTOTAL-GWGL201603047.htmSONG Yao, XU Jian. Research on strengthening method of shearkey damage in prefabricated voided slab bridge[J]. Journal of China and Foreign Highway, 2016, 36(3): 216-220. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GWGL201603047.htm [24] 项贻强, 邢骋, 邵林海, 等. 横向加固空心板梁桥荷载横向分布计算方法与试验研究[J]. 中国公路学报, 2013, 26(2): 63-68. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL201302010.htmXIANG Yi-qiang, XING Cheng, SHAO Lin-hai, et al. Calculating method and experimental research on lateral load distribution of transversely strengthened hollow slab bridge[J]. China Journal of Highway and Transport, 2013, 26(2): 63-68. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL201302010.htm [25] 项贻强, 邢骋, 邵林海, 等. 铰接预应力混凝土空心板梁桥的空间受力行为及加固分析[J]. 东南大学学报(自然科学版), 2012, 42(4): 734-738. https://www.cnki.com.cn/Article/CJFDTOTAL-DNDX201204031.htmXIANG Yi-qiang, XING Cheng, SHAO Lin-hai, et al. Spatial behavior and strengthening analysis of fabricated PC hollow slab beam bridge with hinge joints[J]. Journal of Southeast University (Natural Science Edition), 2012, 42(4): 734-738. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DNDX201204031.htm [26] 魏洋, 胡胜飞, 吴刚, 等. 横向预应力与压浆加固装配式空心板梁桥试验研究[J]. 公路, 2014, 59(6): 143-149. https://www.cnki.com.cn/Article/CJFDTOTAL-GLGL201406031.htmWEI Yang, HU Sheng-fei, WU Gang, et al. Test and study of assembly hollow slab bridges strengthened with transverse prestressing and grouting[J]. Highway, 2014, 59(6): 143-149. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GLGL201406031.htm [27] 沈标河. 横向张拉装配式空心板桥试设计研究[D]. 福州: 福州大学, 2017.SHEN Biao-he. Research on trial design of assembly voided slab bridge with transverse post-tensioning[D]. Fuzhou: Fuzhou University, 2017. (in Chinese) [28] 王渠, 吴庆雄, 陈宝春. 装配式空心板桥铰缝破坏模式试验研究[J]. 工程力学, 2014, 31(增): 115-120. https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX2014S1022.htmWANG Qu, WU Qing-xiong, CHEN Bao-chun. Experimental study on failure mode of hinged joint in assembly voided slab bridge[J]. Engineering Mechanics, 2014, 31(S): 115-120. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX2014S1022.htm [29] SEMENDARY A A, STEINBERG E P, WALSH K K, et al. Live-load moment-distribution factors for an adjacent precast prestressed concrete box beam bridge with reinforced UHPC shear key connections[J]. Journal of Bridge Engineering, 2017, 22(11): 04017088. [30] HANNA K E, MORCOUS G, TADROS M K. Transverse post-tensioning design and detailing of precast prestressed concrete adjacent-box-girder bridges[J]. PCI Journal, 2009, 54(4): 159-174. [31] YUAN J Q, GRAYBEAL B. Full-scale testing of shear key details for precast concrete box-beam bridges[J]. Journal of Bridge Engineering, 2016, 21(9): 04016043. -