Wind-induced vibration performance of suspended double-deck closed box girder bridge deck
-
摘要: 以悬吊双层闭口箱梁桥面为研究对象,通过风洞试验,针对结构静力耦合与气动干扰对悬吊双层闭口箱梁桥面风振性能影响进行了研究;采用变分模态分解方法对试验监测信号进行模态分解,识别颤振模态;通过振动形态矢量图与相位图对颤振弯扭耦合程度及弯扭相位差进行分析;根据最小二乘法识别颤振导数,基于激励-反馈原理,由颤振导数识别颤振气动阻尼。研究结果表明:在结构静力耦合与气动干扰共同作用下,下层断面发生软颤振,其竖向、扭转振动参与度系数分别为0.85、0.53,其颤振形态倾向于竖向振动;下层断面在自激气动力作用下发生颤振,自激气动力相位差减小导致颤振弯扭相位差减小为81.29°,而上层断面在结构耦合力作用下发生强迫振动,结构耦合力相位差决定上层断面弯扭相位差为100.81°;下层断面竖向振动气动阻尼主要来源于竖向速度自激升力负阻尼以及弯扭速度通过激励反馈所产生的耦合升力负阻尼,分别为60%和40%;下层断面转振动气动阻尼主要来源于扭转速度自激升力矩正阻尼以及弯扭速度通过激励反馈所产生的耦合升力矩正阻尼,分别为45%和50%。可见,对于悬吊双层闭口箱梁桥面,下层断面在竖向振动气动负阻尼驱动下发生偏于竖向振动形态软颤振,下层断面软颤振诱发悬吊双层桥面振动系统整体发生弯扭耦合软颤振。Abstract: A suspended double-deck closed box girder bridge deck was taken as the research object, and the influences of structural static coupling and aerodynamic interference on the wind-induced vibration performance of the bridge deck were studied through a wind tunnel test. The variational mode decomposition method was used to perform the mode decomposition on experimental monitoring signals and identify flutter modes. A vibration morphology vector diagram and a phase diagram were used to analyze the coupling degree of flutter bending and torsion and the phase difference of the bending and torsion. Flutter derivatives were identified by the least square method, and the aerodynamic damping of the flutter was identified by the flutter derivatives based on the incentive-feedback principle. Research results show that under the joint action of structural static coupling and aerodynamic interference, soft flutter occurs on the lower section, and the vertical and torsional vibration participation coefficients are 0.85 and 0.53, respectively. The flutter morphology tends to be a vertical vibration morphology. The lower section flutters under the action of self-excited aerodynamic force, and the decrease in the phase difference of the self-excited aerodynamic force makes the phase difference of the flutter bending and torsion reduce to 81.29°. However, the upper section performs a forced vibration under the action of a structural coupling force, and the phase difference of the bending and torsion of the upper section is determined to be 100.81° under the influence of the phase difference of the structural coupling force. The aerodynamic damping of the vertical vibration in the lower section mainly comes from the negative damping of a self-excited lift force of vertical velocity and the negative damping of a coupled lift force generated by the bending and torsional velocity through the incentive and feedback, which account for 60% and 40%, respectively. The aerodynamic damping of the torsional vibration in the lower section mainly comes from the positive damping of a self-excited lift force torque of torsional velocity and the positive damping of a coupled lift force torque generated by the bending and torsional velocity through the incentive and feedback, which account for 45% and 50%, respectively. Therefore, for the suspended double-deck closed box girder bridge deck, the soft flutter of the lower section is inclined to the vertical vibration morphology under the aerodynamic negative damping drive of the vertical vibration, and the soft flutter of the lower section induces a soft flutter with a bending-torsional coupling of the vibration system for the suspended double-deck bridge deck. 1 tab, 17 figs, 35 refs.
-
表 1 振动参数
Table 1. Vibration parameters
类型 单位长度等效质量/(kg·m-1) 单位长度等效质量惯矩/(kg·m2·m-1) 竖向振动频率/Hz 扭转振动频率/Hz 竖向振动阻尼比/% 扭转振动阻尼比/% 上层断面 11.756 0.43 4.45 9.58 0.36 0.40 下层断面 6.260 0.15 2.01 2.19 0.97 0.50 -
[1] 刘志文, 易志涛, 陈政清, 等. 斜风下板桁结合加劲梁静气动力系数试验研究[J]. 湖南大学学报(自然科学版), 2020, 47(5): 78-87. https://www.cnki.com.cn/Article/CJFDTOTAL-HNDX202005009.htmLIU Zhi-wen, YI Zhi-tao, CHEN Zheng-qing, et al. Experimental study on aerostatic coefficients of plate-truss composite stiffening girder under skew wind[J]. Journal of Hunan University (Natural Sciences), 2020, 47(5): 78-87. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HNDX202005009.htm [2] TANG Hao-jun, LI Yong-le, WANG Yun-fei, et al. Aerodynamic optimization for flutter performance of steel truss stiffening girder at large angles of attack[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2017, 168: 260-270. doi: 10.1016/j.jweia.2017.06.013 [3] NIU Hua-wei, ZHU Jin, CHEN Zheng-qing, et al. Dynamic performance of a slender truss bridge subjected to extreme wind and traffic loads considering 18 flutter derivatives[J]. Journal of Aerospace Engineering, 2019, 32(6): 1-14. [4] 张瑞林, 杨鸿波, 刘志文, 等. 桁架加劲梁悬索桥后颤振特性节段模型试验研究[J]. 振动与冲击, 2022, 41(5): 1-8, 19. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ202205001.htmZHANG Rui-lin, YANG Hong-bo, LIU Zhi-wen, et al. Segmental model tests for post flutter characteristics of truss-stiffening girder suspension bridge[J]. Journal of Vibration and Shock, 2022, 41(5): 1-8, 19. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ202205001.htm [5] WANG Kai, LIAO Hai-li, LI Ming-shui. Flutter suppression of long-span suspension bridge with truss girder[J]. Wind and Structures, 2016, 23(5): 405-420. doi: 10.12989/was.2016.23.5.405 [6] TANG Hao-jun, SHUN K M, TAO Qi-yu, et al. Vortex-induced vibration of a truss girder with high vertical stabilizers[J]. Advances in Structural Engineering, 2019, 22(4): 948-959. doi: 10.1177/1369433218778656 [7] 陈政清, 欧阳克俭, 牛华伟, 等. 中央稳定板提高桁架梁悬索桥颤振稳定性的气动机理[J]. 中国公路学报, 2009, 22(6): 53-59. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL200906007.htmCHEN Zheng-qing, OUYANG Ke-jian, NIU Hua-wei, et al. Aerodynamic mechanism of improvement of flutter stability of truss-girder suspension bridge using central stabilizer[J]. China Journal of Highway and Transport, 2009, 22(6): 55-59. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL200906007.htm [8] 欧阳克俭, 陈政清. 中央稳定板提高颤振稳定性能的细观作用机理[J]. 振动与冲击, 2016, 35(1): 11-16. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ201601004.htmOUYANG Ke-jian, CHEN Zheng-qing. Micro-mechanism of a central stabilizer for improving a bridge's flutter stability[J]. Journal of Vibration and Shock, 2016, 35(1): 11-16. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ201601004.htm [9] 李加武, 车鑫, 高斐, 等. 窄悬索桥颤振失稳控制措施效果研究[J]. 振动与冲击, 2012, 31(23): 77-81, 86. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ201223016.htmLI Jia-wu, CHE Xin, GAO Fei, et al. Effects of wind-resistant control measures against flutter instability of a narrow suspension bridge[J]. Journal of Vibration and Shock, 2012, 31(23): 71-81, 86. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ201223016.htm [10] 刘庆宽, 盛永青, 马文勇, 等. 小宽高比钢桁架悬索桥颤振稳定气动措施的试验研究[J]. 实验流体力学, 2012, 26(3): 26-31. https://www.cnki.com.cn/Article/CJFDTOTAL-LTLC201203006.htmLIU Qing-kuan, SHENG Yong-qing, MA Wen-yong, et al. Experimental study on aerodynamic measures for flutter stability of suspension bridge with small aspect ratio steel truss girder[J]. Journal of Experiments in Fluid Mechanics, 2012, 26(3): 26-31. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-LTLC201203006.htm [11] 王凯, 廖海黎, 李明水. 基于风洞试验的大跨度钢桁梁悬索桥颤振性能研究[J]. 振动与冲击, 2015, 34(15): 175-180, 194. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ201515032.htmWANG Kai, LIAO Hai-li, LI Ming-shui. Flutter performances of a long-span suspension bridge with steel trusses based on wind tunnel testing[J]. Journal of Vibration and Shock, 2015, 34(15): 175-180, 194. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ201515032.htm [12] 李永乐, 苏洋, 武兵, 等. 风屏障对大跨度桁架桥风致振动及车辆风载荷的综合影响研究[J]. 振动与冲击, 2016, 35(12): 141-146, 159. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ201612022.htmLI Yong-le, SU Yang, WU Bing, et al. Comprehensive effect of wind screens on wind induced vibration of long-span truss bridge and wind loads of vehicles[J]. Journal of Vibration and Shock, 2016, 35(12): 141-146, 159. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ201612022.htm [13] 李永乐, 安伟胜, 蔡宪棠, 等. 倒梯形板桁主梁CFD简化模型及气动特性研究[J]. 工程力学, 2011, 28(增1): 103-109. https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX2011S1023.htmLI Yong-le, AN Wei-sheng, CAI Xian-tang. Simplified CFD modal and aerodynamic characteristics of inverted trapezoidal plate-truss deck[J]. Engineering Mechanics, 2011, 28(S1): 103-109. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX2011S1023.htm [14] 陈以荣, 曹张, 刘志文, 等. 钢桁架人行桥行人风环境及抗风性能研究[J]. 振动与冲击, 2019, 38(16): 274-280. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ201916039.htmCHEN Yi-rong, CAO Zhang, LIU Zhi-wen, et al. A study on pedestrian level wind environment and wind-resistance performances of a steel truss footbridge[J]. Journal of Vibration and Shock, 2019, 38(16): 274-280. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ201916039.htm [15] OH S, SEO S I, LEE H, et al. Prediction of wind velocity to raise vortex-induced vibration through a road-rail bridge with truss-shaped girder[J]. Shock and Vibration, 2018, DOI: 10.1155/2018/2829640. [16] FANG Chen, HU Rui-jie, TANG Hao-jun, et al. Experimental and numerical study on vortex-induced vibration of a truss girder with two decks[J]. Advances in Structural Engineering, 2021, 24(5): 841-855. [17] WU Bo, WANG Qi, LIAO Hai-li, et al. Hysteresis response of nonlinear flutter of a truss girder: experimental investigations and theoretical predictions[J]. Computers and Structures, 2020, 238: 1-17. [18] WU Bo, WANG Qi, LIAO, Hai-li, et al. Effects of vertical motion on monlinear flutter of a bridge girder[J]. Journal of Bridge Engineering, 2020, 25(11): 1-14. [19] LI Ming, SUN Yan-guo, LEI Yong-fu, et al. Experimental study of the nonlinear torsional flutter of a long-span suspension bridge with a double-deck truss girder[J]. International Journal of Structural Stability and Dynamics, 2021, 21(7): 2150102. [20] 伍波, 王骑, 廖海黎. 双层桥面桁架梁软颤振特性风洞试验研究[J]. 振动与冲击, 2020, 39(1): 191-198. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ202001027.htmWU Bo, WANG Qi, LIAO Hai-li. Wind tunnel tests for soft flutter characteristics of double-deck truss girder[J]. Journal of Vibration and Shock, 2020, 39(1): 191-198. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ202001027.htm [21] 雷永富, 李明, 孙延国. 大跨度双层桁架梁悬索桥颤振性能试验研究[J]. 西南交通大学学报, 2020, DOI: 10.3969/j.issn.0258-2724.20200599.LEI Yong-fu, LI Ming, SUN Yan-guo. Experimental study of the flutter performance of a long-span suspension bridge with a double-deck truss girder[J]. Journal of Southwest Jiaotong University, 2020, DOI: 10.3969/j.issn.0258-2724.20200599.(inChinese) [22] LI Yong-le, TANG Hao-jun, WU Bing, et al. Flutter performance optimization of steel truss girder with double-decks by wind tunnel tests[J]. Advances in Structural Engineering, 2018, 21(6): 906-917. [23] 徐昕宇, 李永乐, 廖海黎, 等. 双层桥面桁架梁三塔悬索桥颤振性能优化风洞试验[J]. 工程力学, 2017, 34(5): 142-147. https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX201705016.htmXU Xin-yu, LI Yong-le, LIAO Hai-li, et al. Flutter optimization of a double-deck truss-stiffened girder three-tower suspension bridge by wind tunnel tests[J]. Engineering Mechanics, 2017, 34(5): 142-147. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX201705016.htm [24] 李永乐, 徐昕宇, 郭建明, 等. 六线双层铁路钢桁桥车桥系统气动特性风洞试验研究[J]. 工程力学, 2016, 33(4): 130-135. https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX201604019.htmLI Yong-le, XU Xin-yu, GUO Jian-ming, et al. Wind tunnel tests on aerodynamic characteristics of vehicle-bridge system for six-track double-deck steel-truss railway bridge[J]. Engineering Mechanics, 2016, 33(4): 130-135. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX201604019.htm [25] 苏洋, 李永乐, 陈宁, 等. 分离式公铁双层桥面桥梁-列车-风屏障系统气动效应风洞试验研究[J]. 土木工程学报, 2015, 48(12): 101-108. https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC201512014.htmSU Yang, LI Yong-le, CHEN Ning, et al. Study on aerodynamic effects of the separate type highway-railway double-deck bridge-vehicle-wind screen system by wind tunnel tests[J]. China Civil Engineering Journal, 2015, 48(12): 101-108. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC201512014.htm [26] 李永乐, 姜孝伟, 苏洋, 等. 分离式公铁双层桥面相互气动干扰及对列车走行性的影响[J]. 振动与冲击, 2016, 35(9): 74-78, 93. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ201609013.htmLI Yong-le, JIANG Xiao-wei, SU Yang, et al. Aerodynamic interaction between road deck and rail deck of separate-type highway-railway bridges and its effect on train running performance[J]. Journal of Vibration and Shock, 2016, 35(9): 74-78, 93. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ201609013.htm [27] DRAGOMIRETSKIY K, ZOSSO D. Variational mode decomposition[J]. IEEE Transactions on Signal Processing, 2014, 62(3): 531-544. [28] 朱乐东, 高广中. 双边肋桥梁断面软颤振非线性自激力模型[J]. 振动与冲击, 2016, 35(21): 29-35. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ201621006.htmZHU Le-dong, GAO Guang-zhong. A nonlinear self-excited force model for soft flutter phenomenon of a twin-side-girder bridge section[J]. Journal of Vibration and Shock, 2016, 35(21): 29-35. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ201621006.htm [29] AMANDOLESE X, MICHELIN S, CHOQUEL M. Low speed flutter and limit cycle oscillations of a two-degree-of-freedom flat plate in a wind tunnel[J]. Journal of Fluids and Structures, 2013, 43: 244-255. [30] 祝志文, 顾明, 陈政清. 基于3211多阶跃激励CFD模型的颤振导数识别研究[J]. 振动工程学报, 2008, 21(1): 18-23. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDGC200801005.htmZHU Zhi-wen, GU Ming, CHEN Zheng-qing. Identification of flutter derivatives based on 3211 multi-step excitation of CFD model[J]. Journal of Vibration Engineering, 2008, 21(1): 18-23. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZDGC200801005.htm [31] 袁良东. 典型桥梁断面软颤振气动力特性研究[D]. 大连: 大连理工大学, 2016.YUAN Liang-dong. Research on aerodynamic forces characteristics of typical bridge decks during soft flutter[D]. Dalian: Dalian University of Technology, 2016. (in Chinese) [32] SCANLAN R H, TOMKO J J. Airfoil and bridge deck flutter derivatives[J]. Journal of the Engineering Mechanics Division, 1971, 97(6): 1117-1737. [33] YU En-bo, XU Guo-ji, HAN Yan, et al. Bridge vibration under complex wind field and corresponding measurements: a review[J]. Journal of Traffic and Transportation Engineering (English Edition), 2022, 9(3): 339-362. [34] 陈政清, 于向东. 大跨桥梁颤振自激力的强迫振动法研究[J]. 土木工程学报, 2002, 35(5): 34-41. https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC200205007.htmCHEN Zheng-qing, YU Xiang-dong. A new method for measuring flutter self-excited forces of long-span bridges[J]. China Civil Engineering Journal, 2002, 35(5): 34-41. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC200205007.htm [35] 杨詠昕, 葛耀君, 项海帆. 平板断面扭弯耦合颤振机理研究[J]. 工程力学, 2006, 23(12): 1-8. https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX200612000.htmYANG Yong-xin, GE Yao-jun, XIANG Hai-fan. Research on the coupled bending-torsional flutter mechanism for thin plate sections[J]. Engineering Mechanics, 2006, 23(12): 1-8. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX200612000.htm -