Dynamic mechanism of surrounding rock and support of large-section tunnel passing through soft-plastic loess layer based on measured data
-
摘要: 选取软塑黄土层分布于隧道拱顶、洞身和隧底3组典型断面开展实测研究,分析了软塑层影响下的围岩变形特征、支护结构力学特征及其差异性,提出了基于实测数据确定支护特性曲线的方法,揭示了软塑黄土层影响下的围岩与支护动态作用机制,给出了相应的防控理念及措施。分析结果表明:隧道围岩变形由大到小依次为软塑黄土层分布于拱顶段、洞身段和隧底段;软塑黄土层分布于拱顶段支护结构拱肩和边墙脚、洞身段拱腰及其以下位置、隧底段拱部和仰拱承受较大围岩压力作用;支护结构承受主要荷载来压方向不同、围岩应力随开挖步序释放率不同及地下水渗流路径不同是3组断面支护结构应力存在差异的直接原因;软塑黄土层分布于拱顶和洞身段时,围岩超前应力释放率约为35%,上台阶开挖支护结构力学性能迅速恶化,软塑黄土层分布于隧底段时,下台阶开挖软塑黄土层对支护结构将产生显著影响;针对上述3类工况,提出的强支护、控侧压和防突沉的防控理念及超前帷幕注浆、大锁脚和基底袖阀管注浆等施工控制措施可有效避免施工灾害的发生。Abstract: Three groups of typical sections with soft-plastic loess layer distributed in the tunnel crown, tunnel body, and tunnel bottom respectively were selected for testing. The deformation characteristics of surrounding rock under the influence of soft-plastic loess layer, the mechanical characteristics of support structure, and their differences were analyzed. The method to determine the characteristic curve of support based on the measured data was proposed. The dynamic mechanism of surrounding rock and support under the influence of soft-plastic loess layer was revealed, and the corresponding control concepts and measures were offered. Analysis results show that the deformation of surrounding rock in descending order results from the soft-plastic loess layer distributed in the tunnel crown, tunnel body and tunnel bottom. The soft-plastic loess layer distributing in the arch shoulder and side wall of support structure of the tunnel crown, the arch waist and its lower positions, and the arch and inverted arch of the tunnel bottom, bears greater pressure of the surrounding rock. The direct reasons for the difference in the stresses of the three sections are the different directions of the main load of the support structure, the different release rates of the pressure of the surrounding rock with the excavation sequence, and the different seepage paths of groundwater. When the soft-plastic loess layer distributes in the tunnel crown and tunnel body, the release rate of advance stress of the surrounding rock is about 35%, and the mechanical properties of the support structure deteriorate rapidly after the upper bench excavation. When the soft-plastic loess layer distributes in the bottom of the tunnel, the excavation of soft-plastic loess layer in the lower bench significantly impacts the support structure. For the above three types of working condition, the control concepts of strong support, lateral pressure control, and sudden settlement prevention and the construction control measures such as the advance drapery grouting, large feet-lock pipe and sleeve valve pipe grouting at the bottom of the foundation, can effectively avoid disasters in construction.
-
表 1 软塑黄土物理力学指标
Table 1. Physical and mechanical indexes of soft-plastic loess
参数 天然含水率/% 天然密度/(g·cm-3) 干密度/(g·cm-3) 颗粒密度/(g·cm-3) 天然孔隙比 饱和度/% 液限指数/塑限指数 0.1~0.2 MPa压缩系数/MPa-1 0.1~0.2 MPa弹性模量/MPa 内摩擦角/(°) 黏聚力/kPa 软塑黄土 26.2~28.9 1.89~1.97 1.48~1.56 2.71~2.72 0.72~0.81 89.0~97.3 11.6~13.5/0.51~0.55 0.22~0.27 6.5~8.1 16.9~18.9 35.2~39.7 表 2 现场监测方案及内容
Table 2. Field monitoring programs and contents
编号 监测内容 测量仪器 布设位置 读测频率 1 拱顶沉降 全站仪、膜片式回复反射器 拱顶沉降测点设置于隧道拱顶中轴线位置,见图 4 与开挖面距离(0~1)S,每天2次;(1~2)S,每天1次;(2~5)S,每2~3天1次;大于5S,每周1次,S为隧道宽度 2 周边收敛 每台阶设置一条水平测线,文中提取了中台阶测线的收敛结果,见图 4 3 围岩压力 HN-ZX20型振弦式土压力盒(频带约为923 Hz) 每个监测断面布设有10个压力盒、20个混凝土应变计,测点布设位置及编号见图 4 距仪器埋设时间0~15 d,每天1~2次;16~30 d,每天1次;大于30 d,每周1次 4 初期支护混凝土应力 MYB150型振弦式应变计(频带约为679 Hz) 5 二次衬砌混凝土应力 表 3 围岩与支护结构参数
Table 3. Parameters of surrounding rock and support structure
类型 重度/(kN·m-3) 弹性模量/MPa 泊松比 黏聚力/kPa 内摩擦角/(°) 渗透系数/(10-6 cm·s-1) 孔隙比 饱和度 抗拉力/kN 单位长度水泥浆刚度/(106 N·m-2) 单位长度水泥浆黏结力/(N·m-1) Q3黄土 17.0 65 0.33 22.3 21.4 30.90 0.91 0.64 Q2黄土 18.6 80 0.33 32.0 27.0 5.15 0.75 0.77 软塑黄土层 19.4 40 0.35 35.2 16.9 5.15 0.77 1.00 古土壤层 19.5 70 0.33 30.0 36.0 0.05 0.71 0.80 C25初期支护 25.5 29 500 0.25 C35二次衬砌 25.0 33 000 0.20 φ22锚杆 78.5 210 000 0.25 250 17.5 2.0×105 表 4 实测初期支护变形及围岩压力
Table 4. Measured primary support deformations and surrounding rock pressures
软塑层分布位置 拱顶段 洞身段 隧底段 开挖步序 实测变形/mm 总变形/mm 实测围岩压力/kPa 支护结构承载比值 实测变形/mm 总变形/mm 实测围岩压力/kPa 支护结构承载比值 实测变形/mm 总变形/mm 实测围岩压力/kPa 支护结构承载比值 上台阶 0.0 87.9 0.0 0.00 0.0 60.8 0.0 0.00 0.0 37.5 0.0 0.00 中台阶 140.5 228.4 102.4 0.08 83.1 143.9 67.6 0.06 16.1 53.6 52.3 0.05 下台阶 207.1 295.0 204.0 0.16 127.8 188.6 129.9 0.11 36.4 73.9 73.2 0.07 仰拱 251.4 339.3 326.4 0.25 173.0 233.8 229.7 0.19 75.0 112.5 125.5 0.12 二衬闭合 272.3 360.2 448.8 0.34 189.2 250.0 318.8 0.27 116.4 153.9 209.2 0.21 -
[1] 谢定义. 试论我国黄土力学研究中的若干新趋向[J]. 岩土工程学报, 2001, 23(1): 3-13. doi: 10.3321/j.issn:1000-4548.2001.01.002XIE Ding-yi. Exploration of some new tendencies in research of loess soil mechanics[J]. Chinese Journal of Geotechnical Engineering, 2001, 23(1): 3-13. (in Chinese) doi: 10.3321/j.issn:1000-4548.2001.01.002 [2] 冯立, 张茂省, 胡炜, 等. 黄土垂直节理细微观特征及发育机制探讨[J]. 岩土力学, 2019, 40(1): 235-244. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201901022.htmFENG Li, ZHANG Mao-sheng, HU Wei, et al. Discussion on microscopic, microcosmic characteristics and developmental mechanism of loess vertical joints[J]. Rock and Soil Mechanics, 2019, 40(1): 235-244. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201901022.htm [3] 李宁, 朱才辉. 黄土隧道设计与施工中的几个问题[J]. 地下空间与工程学报, 2016, 12(6): 1598-1607. https://www.cnki.com.cn/Article/CJFDTOTAL-BASE201606026.htmLI Ning, ZHU Cai-hui. Some issues of loess tunnel in design and construction[J]. Chinese Journal of Underground Space and Engineering, 2016, 12(6): 1598-1607. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-BASE201606026.htm [4] 张顶立, 孙振宇, 侯艳娟. 隧道支护结构体系及其协同作用[J]. 力学学报, 2019, 51(2): 577-593. https://www.cnki.com.cn/Article/CJFDTOTAL-LXXB201902028.htmZHANG Ding-li, SUN Zhen-yu, HOU Yan-juan. Tunnel support structure system and its synergistic effect[J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(2): 577-593. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-LXXB201902028.htm [5] 谷拴成. 巷道衬砌与围岩相互作用的有限元-边界元耦合数值计算[J]. 淮南矿业学院学报, 1992, 12(增1): 72-79, 100. https://www.cnki.com.cn/Article/CJFDTOTAL-HLGB1992Z1007.htmGU Shuan-cheng. Numerical computation of coupling FEM-BEM for interaction between roadway liner and surrounding rock[J]. Journal of Huainan Mining Institute, 1992, 12(S1): 72-79, 100. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HLGB1992Z1007.htm [6] 吴顺川, 潘旦光, 高永涛. 深埋圆形巷道围岩和衬砌相互作用解析解[J]. 工程力学, 2011, 28(3): 136-142. https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX201103021.htmWU Shun-chuan, PAN Dan-guang, GAO Yong-tao. Analytic solution for rock-liner interaction of deep circular tunnel[J]. Engineering Mechanics, 2011, 28(3): 136-142. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX201103021.htm [7] 何川, 齐春, 封坤, 等. 基于D-P准则的盾构隧道围岩与衬砌结构相互作用分析[J]. 力学学报, 2017, 49(1): 31-40. https://www.cnki.com.cn/Article/CJFDTOTAL-LXXB201701004.htmHE Chuan, QI Chun, FENG Kun, et al. Theoretical analysis of interaction between surrounding rocks and lining structure of shield tunnel based on Drucker-Prager yield criteria[J]. Chinese Journal of Theoretical and Applied Mechanics, 2017, 49(1): 31-40. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-LXXB201701004.htm [8] 任明洋, 张强勇, 陈尚远, 等. 复杂地质条件下大埋深隧洞衬砌与围岩协同作用物理模型试验研究[J]. 土木工程学报, 2019, 52(8): 98-109. https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC201908011.htmREN Ming-yang, ZHANG Qiang-yong, CHEN Shang-yuan, et al. Physical model test study on synergistic action of lining-rock for deep tunnel under complex geological conditions[J]. China Civil Engineering Journal, 2019, 52(8): 98-109. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC201908011.htm [9] ALONSO E, ALEJANO L R, VARAS F, et al. Ground response curves for rock masses exhibiting strain-softening behaviour[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2003, 27(13): 1153-1185. doi: 10.1002/nag.315 [10] 张素敏, 朱永全, 景诗庭. 收敛约束原理在隧道位移稳定性判据中的应用[J]. 铁道标准设计, 2004, 48(8): 38-40, 114. doi: 10.3969/j.issn.1004-2954.2004.08.015ZHANG Su-min, ZHU Yong-quan, JING Shi-ting. The application of convergence confinement principle to judgment of the stability of tunnel displacement[J]. Railway Standard Design, 2004, 48(8): 38-40, 114. (in Chinese) doi: 10.3969/j.issn.1004-2954.2004.08.015 [11] 来弘鹏, 杨晓华, 林永贵. 黄土公路隧道衬砌开裂分析[J]. 长安大学学报(自然科学版), 2007, 27(1): 45-49. doi: 10.3321/j.issn:1671-8879.2007.01.011LAI Hong-peng, YANG Xiao-hua, LIN Yong-gui. Analysis on lining cracks of highway tunnel in loess area[J]. Journal of Chang'an University (Natural Science Edition), 2007, 27(1): 45-49. (in Chinese) doi: 10.3321/j.issn:1671-8879.2007.01.011 [12] 赖金星, 王开运, 来弘鹏, 等. 软弱黄土隧道支护结构力学特性测试[J]. 交通运输工程学报, 2015, 15(3): 41-51. doi: 10.3969/j.issn.1671-1637.2015.03.007LAI Jin-xing, WANG Kai-yun, LAI Hong-peng, et al. Mechanical characteristic test of tunnel support structure in weak loess stratum[J]. Journal of Traffic and Transportation Engineering, 2015, 15(3): 41-51. (in Chinese) doi: 10.3969/j.issn.1671-1637.2015.03.007 [13] 扈世民, 张顶立, 李鹏飞, 等. 大断面黄土隧道初期支护适应性研究[J]. 岩土力学, 2011, 32(增2): 660-665. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2011S2109.htmHU Shi-min, ZHANG Ding-li, LI Peng-fei, et al. Analysis of initial support adaptability of the large-section loess tunnel[J]. Rock and Soil Mechanics, 2011, 32(S2): 660-665. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2011S2109.htm [14] 陈建勋, 王梦恕, 轩俊杰, 等. 两车道公路黄土隧道变形规律[J]. 交通运输工程学报, 2012, 12(3): 9-18. doi: 10.3969/j.issn.1671-1637.2012.03.005CHEN Jian-xun, WANG Meng-shu, XUAN Jun-jie, et al. Deformation rule of loess highway tunnel with two lanes[J]. Journal of Traffic and Transportation Engineering, 2012, 12(3): 9-18. (in Chinese) doi: 10.3969/j.issn.1671-1637.2012.03.005 [15] 侯公羽, 李晶晶. 弹塑性变形条件下围岩-支护相互作用全过程解析[J]. 岩土力学, 2012, 33(4): 961-970. doi: 10.3969/j.issn.1000-7598.2012.04.001HOU Gong-yu, LI Jing-jing. Analysis of complete process of interaction of surrounding rock and support under elastioplastic deformation condition[J]. Rock and Soil Mechanics, 2012, 33(4): 961-970. (in Chinese) doi: 10.3969/j.issn.1000-7598.2012.04.001 [16] PARK K H, KIM Y J. Analytical solution for a circular opening in an elastic-brittle-plastic rock[J]. International Journal of Rock Mechanics and Mining Sciences, 2006, 43(4): 616-622. doi: 10.1016/j.ijrmms.2005.11.004 [17] 孙闯, 张向东, 刘家顺. 基于Hoek-Brown强度准则的应变软化模型在隧道工程中的应用[J]. 岩土力学, 2013, 34(10): 2954-2960, 2970. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201310030.htmSUN Chuang, ZHANG Xiang-dong, LIU Jia-shun. Application of strain softening model to tunnels based on Hoek-Brown strength criterion[J]. Rock and Soil Mechanics, 2013, 34(10): 2954-2960, 2970. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201310030.htm [18] 郑雨天, 朱浮声. 巷道围岩特性曲线量测原理和方法[J]. 煤炭学报, 1995, 20(2): 130-134. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB502.003.htmZHENG Yu-tian, ZHU Fu-sheng. Principles and methods for measuring characteristic curves of roadway rocks[J]. Journal of China Coal Society, 1995, 20(2): 130-134. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB502.003.htm [19] 阿比尔的, 郑颖人, 冯夏庭, 等. 隧道特征线法的修正与发展[J]. 岩石力学与工程学报, 2015, 34(增1): 3067-3073. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2015S1059.htmABI Erdi, ZHENG Ying-ren, FENG Xia-ting, et al. Modification and development of characteristic line method of tunnel[J]. Chinese Journal of Rock Mechanics and Engineering, 2015, 34(S1): 3067-3073. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2015S1059.htm [20] GONZÁLEZ-NICIEZAA C, ÁLVAREZ-VIGILB A E, MENÉNDEZ-DÍAZ A, et al. Influence of the depth and shape of a tunnel in the application of the convergence-confinement method[J]. Tunnelling and Underground Space Technology, 2008, 23(1): 25-37. [21] 陈峰宾, 张顶立, 扈世民, 等. 基于收敛约束原理的大断面黄土隧道围岩与初支稳定性分析[J]. 北京交通大学学报, 2011, 35(4): 28-32. https://www.cnki.com.cn/Article/CJFDTOTAL-BFJT201104005.htmCHEN Feng-bin, ZHANG Ding-li, HU Shi-min, et al. Stability analysis of surrounding rock and supports in large-span loess tunnel using the convergence-confinement method[J]. Journal of Beijing Jiaotong University, 2011, 35(4): 28-32. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-BFJT201104005.htm [22] 李健, 谭忠盛. 大断面黄土隧道初期支护与围岩相互作用机理研究[J]. 现代隧道技术, 2013, 50(3): 79-86. https://www.cnki.com.cn/Article/CJFDTOTAL-XDSD201303014.htmLI Jian, TAN Zhong-sheng. Study on interaction mechanism between initial support and surrounding rock of large section loess tunnel[J]. Modern Tunnelling Technology, 2013, 50(3): 79-86. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XDSD201303014.htm [23] GESTA P, 王可钧, 佘诗刚. 隧道的支护和衬砌——对使用收敛-约束法的建议(Ⅱ)[J]. 力学进展, 1990(2): 264-273. https://www.cnki.com.cn/Article/CJFDTOTAL-LXJZ199001012.htmGESTA P, WANG Ke-jun, SHE Shi-gang. Support and lining of tunnel—suggestions on using convergence-constraint method (Ⅱ)[J]. Advances in Mechanics, 1990(2): 264-273. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-LXJZ199001012.htm [24] 王道远, 袁金秀, 朱永全, 等. 硬塑-流塑浅埋黄土隧道变形特性及合理预留变形量模型试验研究[J]. 岩土力学, 2019, 40(10): 3813-3822. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201910016.htmWANG Dao-yuan, YUAN Jin-xiu, ZHU Yong-quan, et al. Model test study of deformation characteristics and reasonable reserved deformation of shallow-buried loess tunnel with hard-flow plastic[J]. Rock and Soil Mechanics, 2019, 40(10): 3813-3822. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201910016.htm [25] 夏永旭, 王文正, 胡庆安. 围岩应力释放率对双联拱隧道施工影响研究[J]. 现代隧道技术, 2005, 42(3): 1-4. https://www.cnki.com.cn/Article/CJFDTOTAL-XDSD200503000.htmXIA Yong-xu, WANG Wen-zheng, HU Qing-an. A study on the effect of the rate of stress relieving of surrounding-rocks on the construction of a double arch tunnel[J]. Modern Tunnelling Technology, 2005, 42(3): 1-4. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XDSD200503000.htm [26] 孟祥连, 夏万云, 周福军, 等. 银西高铁董志塬地区黄土工程特性分析研究[J]. 铁道工程学报, 2016, 33(12): 24-28, 52. https://www.cnki.com.cn/Article/CJFDTOTAL-TDGC201612006.htmMENG Xiang-lian, XIA Wan-yun, ZHOU Fu-jun, et al. Analysis and study of loess engineering characteristics of Dongzhiyuan on Xi'an-Yinchuan High-Speed Railway[J]. Journal of Railway Engineering Society, 2016, 33(12): 24-28, 52. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TDGC201612006.htm [27] 谭鑫, 金宇轩, 赵明华. 锚杆与围岩共同作用的围岩特性曲线修正分析[J]. 地下空间与工程学报, 2020, 16(3): 812-819. https://www.cnki.com.cn/Article/CJFDTOTAL-BASE202003020.htmTAN Xin, JIN Yu-xuan, ZHAO Ming-hua. Correction analysis on ground reaction curve considering interaction between bolts and surrounding rock[J]. Chinese Journal of Underground Space and Engineering, 2020, 16(3): 812-819. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-BASE202003020.htm [28] MAO Zheng-jun, WANG Xiao-kang, AN Ning, et al. Water leakage susceptible areas in loess multi-arch tunnel operation under the lateral recharge conditions[J]. Environmental Earth Sciences, 2020, 79: 1-32. [29] 蔚立元, 李术才, 徐帮树, 等. 水下隧道流固耦合模型试验与数值分析[J]. 岩石力学与工程学报, 2011, 30(7): 1467-1474. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201107023.htmYU Li-yuan, LI Shu-cai, XU Bang-shu, et al. Study of solid-fluid coupling model test and numerical analysis of underwater tunnels[J]. Chinese Journal of Rock Mechanics and Engineering, 2011, 30(7): 1467-1474. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201107023.htm [30] 梁庆国, 陈星宇, 刘晓杰, 等. 富水黄土隧道围岩大变形控制技术研究——以银百高速甜永段榆林子隧道为例[J]. 安全与环境工程, 2022, 29(4): 55-65. https://www.cnki.com.cn/Article/CJFDTOTAL-KTAQ202204006.htmLIANG Qing-guo, CHEN Xing-yu, LIU Xiao-jie, et al. Large deformation control technology of surrounding rock of water-rich loess tunnels—a case study about Yulinzi Tunnel in Tianshuibao-Yonghe part of Yinchuan-Baise Highway[J]. Safety and Environmental Engineering, 2022, 29(4): 55-65. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-KTAQ202204006.htm [31] KLEINBERG R L, FLAUM C, GRIFFIN D D, et al. Deep sea NMR: methane hydrate growth habit in porous media and its relationship to hydraulic permeability, deposit accumulation, and submarine slope stability[J]. Journal of Geophysical Research, 2003, DOI: 10.1029/2003JB002389. [32] 王春波, 丁文其, 刘书斌, 等. 各向异性渗透系数随应变场动态变化分析[J]. 岩石力学与工程学报, 2014, 33(增1): 3015-3021. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2014S1060.htmWANG Chun-bo, DING Wen-qi, LIU Shu-bin, et al. Analysis of dynamic changes of anisotropic permeability coefficient with volumetric strain in seepage coupling[J]. Chinese Journal of Rock Mechanics and Engineering, 2014, 33(S1): 3015-3021. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2014S1060.htm [33] 来弘鹏, 谭智鹏, 孙玉坤, 等. 富水黄土隧道施工过程围岩水分迁移规律研究[J]. 中国公路学报, 2023, 36(1): 150-161.LAI Hong-peng, TAN Zhi-peng, SUN Yu-kun, et al. Study on the law of water migration in surrounding rock during construction of water-rich loess tunnel[J]. China Journal of Highway and Transport, 2023, 36(1): 150-161. (in Chinese) [34] 孙钧. 岩石流变力学及其工程应用研究的若干进展[J]. 岩石力学与工程学报, 2007, 26(6): 1081-1106. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200706001.htmSUN Jun. Rock rheological mechanics and its advance in engineering applications[J]. Chinese Journal of Rock Mechanics and Engineering, 2007, 26(6): 1081-1106. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200706001.htm [35] 陈建勋, 楚锟, 王天林. 用收敛-约束法进行隧道初期支护设计[J]. 西安公路交通大学学报, 2001, 21(2): 57-59, 69. https://www.cnki.com.cn/Article/CJFDTOTAL-XAGL200102018.htmCHEN Jian-xun, CHU Kun, WANG Tian-lin. Supporting design of tunnel at initial stage with convergence-confinement method[J]. Journal of Xi'an Highway University, 2001, 21(2): 57-59, 69. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XAGL200102018.htm [36] 吴秋军, 王明年, 刘大刚. 基于现场位移监测数据统计分析的隧道围岩稳定性研究[J]. 岩土力学, 2012, 33(增2): 359-364. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2012S2057.htmWU Qiu-jun, WANG Ming-nian, LIU Da-gang. Research on stability of tunnel surrounding rocks based on statistical analysis of on-site displacement monitoring data[J]. Rock and Soil Mechanics, 2012, 33(S2): 359-364. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2012S2057.htm -