留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

中国道路工程中土壤固化技术综述

季节 梁犇 韩秉烨 索智 王佳妮 于海臣

季节, 梁犇, 韩秉烨, 索智, 王佳妮, 于海臣. 中国道路工程中土壤固化技术综述[J]. 交通运输工程学报, 2023, 23(2): 47-66. doi: 10.19818/j.cnki.1671-1637.2023.02.003
引用本文: 季节, 梁犇, 韩秉烨, 索智, 王佳妮, 于海臣. 中国道路工程中土壤固化技术综述[J]. 交通运输工程学报, 2023, 23(2): 47-66. doi: 10.19818/j.cnki.1671-1637.2023.02.003
JI Jie, LIANG Ben, HAN Bing-ye, SUO Zhi, WANG Jia-ni, YU Hai-chen. Review on soil solidified technologies in road engineering in China[J]. Journal of Traffic and Transportation Engineering, 2023, 23(2): 47-66. doi: 10.19818/j.cnki.1671-1637.2023.02.003
Citation: JI Jie, LIANG Ben, HAN Bing-ye, SUO Zhi, WANG Jia-ni, YU Hai-chen. Review on soil solidified technologies in road engineering in China[J]. Journal of Traffic and Transportation Engineering, 2023, 23(2): 47-66. doi: 10.19818/j.cnki.1671-1637.2023.02.003

中国道路工程中土壤固化技术综述

doi: 10.19818/j.cnki.1671-1637.2023.02.003
基金项目: 

国家重点研发计划 2022YFC38703400

国家自然科学基金项目 52078025

北京市教育委员会科技计划项目 KZ201910016017

详细信息
    作者简介:

    季节(1972-),女,河南信阳人,北京建筑大学教授,工学博士,从事道路工程研究JI Jie(1972-), female, professor, PhD, jijie@bucea.edu.cn

  • 中图分类号: U416.1

Review on soil solidified technologies in road engineering in China

Funds: 

National Key Research and Development Program of China 2022YFC38703400

National Natural Science Foundation of China 52078025

Science and Technology Project of Beijing Municipal Education Commission KZ201910016017

More Information
Article Text (Baidu Translation)
  • 摘要: 为在道路工程建设中更灵活使用不同土壤固化技术并完善固化土规程,对比分析了土壤固化剂对不同土壤的固化效果与适用范围;梳理了道路工程设计和施工规范,统计其对基层与底基层的强度要求,并与固化土规范进行对比,分析了不同等级固化土的强度范围与公路规范要求强度区间的匹配性;结合实际固化强度效果与规范要求,建立了有机固化土与无机固化土在强度要求上的内在联系。研究结果表明:无机、离子、有机3类土壤固化剂对黏土等非特殊土均具有较好的固化效果,有机土壤固化剂具有更广泛的适用范围,且对红土等特殊土表现出更好的固化效果;公路规范中基层不同7 d无侧限抗压强度要求的重叠区间和最小7 d无侧限抗压强度要求各点位组成的下限区间相结合,二者区间交集为[1.5, 5.0]MPa,三级固化土最小强度要求为2.5 MPa,与公路交集区间的5.0 MPa差异较大;结合固化土本身特性和不同道路类型与结构层等对材料力学性能的要求,建议将固化土分级体系细化,新增四级[3.0,4.0)MPa、五级[4.0,5.0)MPa和六级[5.0,+∞)MPa3种等级;在现行规范中未有针对有机固化土的技术要求,而其力学性能基本上接近无机固化土,适用范围优于无机固化土,建议后续规范修订中新增有机固化土类别,以便规范化应用。

     

  • 图  1  土壤固化剂分类

    Figure  1.  Classification of soil stabilizers

    图  2  无机土壤固化剂

    Figure  2.  Inorganic soil stabilizers

    图  3  无机土壤固化剂固化机理

    Figure  3.  Solidification mechanism of inorganic soil stabilizer

    图  4  有机土壤固化剂

    Figure  4.  Organic soil stabilizers

    图  5  有机土壤固化剂固化机理

    Figure  5.  Solidification mechanism of organic soil stabilizer

    图  6  离子土壤固化剂

    Figure  6.  Ionic soil stabilizers

    图  7  离子土壤固化剂固化机理

    Figure  7.  Solidification mechanism of ionic soil stabilizer

    图  8  双电子层厚度降低过程

    Figure  8.  Decreasing process of double-electron layer thickness

    图  9  生物酶土壤固化剂

    Figure  9.  Biological enzyme soil stabilizers

    图  10  生物酶土壤固化剂固化机理

    Figure  10.  Solidification mechanism of biological enzyme soil stabilizer

    图  11  无机固化土无侧限抗压强度及其提升幅度

    Figure  11.  Unconfined compressive strengths and increasing amplitudes of inorganic solidified soils

    图  12  离子固化土无侧限抗压强度及其提升幅度

    Figure  12.  Unconfined compressive strengths and increasing amplitudes of ionic solidified soils

    图  13  有机固化土无侧限抗压强度及其提升幅度

    Figure  13.  Unconfined compressive strengths and increasing amplitudes of organic solidified soils

    图  14  生物酶固化土无侧限抗压强度

    Figure  14.  Unconfined compressive strengths of biological enzyme solidified soils

    图  15  不同固化剂对土壤的固化效果

    Figure  15.  Solidified effects of different stabilizers on soils

    图  16  不同道路等级、交通荷载的公路基层与底基层的7 d无侧限抗压强度要求

    Figure  16.  7 d unconfined compressive strength requirements for bases and sub-bases with different road levels and traffic volumes

    表  1  固化土等级划分与性能指标

    Table  1.   Classification and performance indexes of solidified soils

    固化土等级 一级 二级 三级
    7 d无侧限抗压强度/MPa [1.5,2.0) [2.0,2.5) [2.5,+∞)
    4 h凝结时间影响系数/% ≥90
    水稳系数/% ≥80
    28 d抗冻性能指标/% 抗冻指数不小于80,质量损失率不大于5
    下载: 导出CSV

    表  2  固化土分类

    Table  2.   Classification of solidified soils

    分类项目 固化土类别
    胶结料类别 水泥固化土、石灰固化土、石灰-水泥固化土、石灰-粉煤灰固化土、复合胶结料固化土
    成型工艺 压实型固化土、灌注型固化土、流态型固化土、喷播型固化土
    用途 道路固化土、墙体固化土、防渗固化土、淤泥固化土、桩基固化土
    下载: 导出CSV

    表  3  无机土壤固化技术

    Table  3.   Inorganic soils solidified technologies

    土壤固化剂类型 土壤类型 使用地区 土壤参数 7 d无侧限抗压强度/MPa 最佳固化剂掺量/% 文献
    液限/% 塑限/% 塑性指数 无机固化土 水泥固化土 固化剂 水泥
    SG-1(矿渣基) 低液限黏土 江苏盐城 22.9 13.8 9.1 4.1 3.5 9.0 1.0 [68]
    GGBS(高炉矿渣) 粉质黏土(淤泥质土) 安徽淮南 37.4 23.5 12.9 1.0 17.0 0.0 [42]
    BCS(水泥基) 粉质黏土(低液限黏土) 陕西杨凌 32.5 19.0 13.5 1.8 1.8 0.6 15.0 [40]
    PS(工业废渣基) 高液限黏土 四川威远 46.0 24.0 22.0 3.0 2.0 8.0 0.0(4.0+4.0) [23]
    PS(工业废渣基) 粉质黏土(盐碱土) 青海盐湖 36.0 20.0 16.0 2.3 1.6 8.0 0.0(4.0+4.0) [23]
    PS(工业废渣基) 砂质土 河北黄骅 26.0 13.0 13.0 2.1 1.5 8.0 0.0(4.0+4.0) [23]
    PS(工业废渣基) 粉质黏土(低液限粉土) 山东东营 30.0 17.0 13.0 1.7 1.5 8.0 0.0(4.0+4.0) [23]
    SH-85(钙基) 红黏土 马来西亚柔佛省 75.0 41.0 33.0 1.0 0.2 9.0 0.0 [37]
    TX-85 (NaAlSiFe, pH=12.54) 红黏土 马来西亚柔佛省 75.0 41.0 33.0 1.1 0.2 9.0 0.0 [69]
    ASM(炉渣基) 高液限黏土 广东广州 2.5 1.2 7.5 12.5 [70]
    MKG(无钙基) 低液限黏土 伍斯特理工学院 3.5 2.5 11.0 0.0(5.0) [71]
    下载: 导出CSV

    表  4  离子土壤固化技术

    Table  4.   Ionic soils solidified technologies

    土壤固化剂类型 土壤类型 使用地区 土壤参数 7 d无侧限抗压强度/MPa 最佳固化剂掺量/% 文献
    液限/% 塑限/% 塑性指数 无机固化土 水泥固化土 固化剂 水泥
    EFS 粉质黏土(低液限黏土) 四川绵阳 31.0 18.36 12.7 3.2 0.020 8.500 [41]
    ZL-2A 粉质黏土(黄土) 陕西榆林 24.1 12.90 11.2 0.100 [77]
    EN-1 黏性土(淤泥质土) 福建宁德 50.7 31.67 19.1 4.6 2.1 0.100 9.000 [54]
    YFS 粉质黏土(低液限黏土) 安徽马鞍 37.5 21.00 16.5 3.6 1.5 0.020 5.000 [76]
    SA 粉质黏土(低液限黏土) 安徽马鞍 37.5 21.00 16.5 2.8 1.5 0.020 5.000 [76]
    HF 粉质黏土(低液限黏土) 安徽马鞍 37.5 21.00 16.5 2.6 1.5 0.020 5.000 [76]
    TK-G 黏性土 北京 3.0 2.1 0.020 6.000 [58]
    EN-1 低液限黏土 浙江金华 43.1 23.20 19.1 0.020 [57]
    EN-1 红黏土 浙江金华 34.9 24.40 19.5 2.9 0.014 5.000+3.000
    (水泥+石灰)
    [36]
    EN-1 淤泥质土 福建宁德 47.8 24.50 23.3 4.6 2.7 0.020 9.000 [53]
    下载: 导出CSV

    表  5  有机土壤固化技术

    Table  5.   Organic soils solidified technologies

    土壤固化剂类型 土壤类型 使用地区 土壤参数 7 d无侧限抗压强度/MPa 最佳固化剂掺量/% 文献
    液限/% 塑限/% 塑性指数 无机固化土 水泥固化土 固化剂 水泥
    PS(聚醋酸乙烯酯/聚甲基丙烯酸酯) 砂质土 伊朗加姆萨尔市 31.7 20.2 11.5 5.0 3.700 [78]
    STW(乙酸-乙烯酯) 高液限黏土 江苏宁淮 52.5 32.8 19.7 2.4 30.000 [27]
    SH 黄土 兰州 31.2 20.2 11.0 3.8 1.50 0.800 0.000(10.000) [24]
    GKS 红黏土 马来西亚 75.0 41.0 34.0 5.1 2.10 9.000 0.000(9.000) [79]
    TG-2(高分子聚合物) 低液限黏土 东北季节性冰冻地区 41.1 23.8 17.3 2.1 1.62 0.015 4.000+4.000 [80]
    EP-W(环氧树脂) 低液限黏土
    砂质土
    希腊塞萨洛
    尼基市
    32.6 19.4 13.2 4.0 2.000
    (ER/W)
    30.000 [81]
    STW(聚醋酸羧基酯) 膨胀土 江苏宁淮高速 18.9 (24 d:0.2) 1.000 0.000 [82]
    E-Polymer
    (丙烯酸酯基)
    粉土质砾-黏土质砾 中东卡塔尔 3.2 2.00 1.000 9.000 [29]
    R-Polymer
    (丙烯酸酯基)
    粉土质砾-黏土质砾 中东卡塔尔 1.9 2.00 1.000 9.000 [29]
    S-Polymer
    (丙烯酸酯基)
    粉土质砾-黏土质砾 中东卡塔尔 2.2 2.00 1.000 9.000 [29]
    L-Polymer
    (丙烯酸酯基)
    高液限粉土 美国佛罗里达州 0.9 2.000 0.000 [14]
    L-Polymer
    (丙烯酸酯基)
    高液限黏土 美国伊利诺斯州 3.0 2.000 0.000 [14]
    下载: 导出CSV

    表  6  生物酶土壤固化技术

    Table  6.   Biological enzyme soils solidified technologies

    土壤固化剂类型 土壤类型 使用地区 土壤参数 7 d无侧限抗压强度/MPa 最佳固化剂掺量% 文献
    液限/% 塑限/% 塑性指数 无机固化土 水泥固化土 固化剂 水泥
    路易酶 粉质黏土
    (低液限黏土)
    河南南阳 5.10(28 d) 0.5 5.1 [36]
    复合乳酸菌 低液限黏土 辽宁沈阳 29.2 17.8 11.4 2.10 5.0 0.0 [26]
    TerraZyme 高液限黏土 湖南长沙 53.8 26.4 27.4 2.10 4.0 3.0 [67]
    TerraZyme 低液限黏土 湖南长沙 47.4 24.6 22.8 1.60 4.0 3.0 [67]
    生物酶 单晶质黏土 喀拉拉邦
    Quilandy
    86.0 49.0 37.0 0.40 200.0 ml·m-3 [71]
    木质素 低液限粉土 江苏盐城 0.30 12.0 0.0 [72]
    葡萄糖 残余黏土(黄土) 韩国 4.30(28 d) 2.7(28 d) 4.9 g·kg-1 0.0(10.0) [83]
    黄原胶溶液 低液限黏土 土耳其 0.56 2.0 0.0 [66]
    瓜尔豆胶 高液限粉土-高液限黏土 印度泰米尔纳德邦 0.33 2.0 0.0 [84]
    下载: 导出CSV

    表  7  基层和底基层相关规范

    Table  7.   Related specifications of base and sub-base

    序号 规范名称 规范号
    1 公路路基设计规范 JTG D30—2015
    2 公路路面基层施工技术细则 JTG/T F20—2015
    3 城市道路工程设计规范 CJJ 37—2010
    4 土壤固化外加剂 CJ/T 486—2015
    4 道路固化土应用技术规程 T/CECS 737—2020
    5 土壤固化剂应用技术标准 CJJ/T 286—2018
    6 城镇道路土壤固化剂稳定混合料基层技术规程 DB42/T 1014—2014
    7 软土固化剂 CJ/T 526—2018
    8 道路复合稳定土应用技术标准 T/CECS G: D31-01—2017
    9 公路沥青路面设计规范 JTG D50—2017
    10 公路水泥混凝土路面设计规范 JTG D40—2011
    11 城镇道路工程施工与质量验收规范 CJJ 1—2008
    12 乡村道路工程技术规范 GB/T 51224—2017
    13 Stand Specification for Materials for Embankments and Sub-Bases AASHTO Designation:
    M 57-80 (2017)
    14 Stand Specification for Classification of Soils and Soil-Aggregate Mixtures for Highway Construction Purposes AASHTO Designation:
    M 145-91 (2008)
    15 A Policy on Geometric Design of Highway and Streets 2018 7th Edition (GDHS-7)ISBN: 978-
    1-56051-676-7
    16 Stand Specification for Materials for Aggregate and Soil-Aggregate Subbase, Base, and Surface Courses AASHTO Designation:
    M 147-17
    17 Standard Practice for Design of Stabilization of Soil and Soil-Like Materials with Self-Cementing Fly Ash ASTM D7762-11
    下载: 导出CSV

    表  8  公路基层和底基层7 d无侧限抗压强度要求

    Table  8.   7 d unconfined compressive strength requirements for bases and sub-bases in highways

    类别 结构层 道路等级 规范编号 荷载等级/MPa
    极重、特重交通 重交通 中、轻交通
    水泥稳定材料、水泥固化土、石灰-水泥固化土、复合胶结料固化土 基层 高速、一级公路 a 5.0~7.0 4.0~6.0 3.0~5.0
    b 5.0~7.0 4.0~6.0 3.0~5.0
    c
    d 3.0~5.0
    二级及以下公路 a 4.0~6.0 3.0~5.0 2.0~4.0
    b 4.0~6.0 3.0~5.0 2.0~4.0
    c 4.0~6.0 3.0~5.0 2.0~4.0
    d 3.0~5.0 2.0~4.0
    底基层 高速、一级公路 a 3.0~5.0 2.5~4.5 2.0~4.0
    b 3.0~5.0 2.5~4.5 2.0~4.0
    c 3.0~5.0 2.5~4.5 2.0~4.0
    d 3.0~5.0 2.5~4.5 2.0~4.0
    二级及以下公路 a 2.5~4.5 2.0~4.0 1.0~3.0
    b 2.5~4.5 2.0~4.0 1.0~3.0
    c 2.5~4.5 2.0~4.0 1.0~3.0
    d 2.5~4.5 2.0~4.0 1.0~3.0
    下载: 导出CSV

    表  9  城镇道路上基层和下基层7 d无侧限抗压强度要求

    Table  9.   7 d unconfined compressive strength requirements for bases and sub-bases in urban roads

    类别 结构层 规范编号 荷载等级/MPa
    特重交通 重、中交通 轻交通
    水泥稳定材料、水泥固化土、石灰-水泥固化土、复合胶结料固化土 上基层 e 3.5~4.5 3.0~4.0 2.5~3.5
    f ≥2.5
    d 3.0~4.0 2.5~3.5
    下基层 e ≥2.5 ≥2.0 ≥1.5
    f ≥2.5 ≥2.0 ≥1.5
    d ≥2.5 ≥2.0 ≥1.5
    下载: 导出CSV

    表  10  乡村道路基层和面层7 d无侧限抗压强度要求

    Table  10.   7 d unconfined compressive strength requirements for bases and surfaces in rural roads

    类别 结构层 规范编号 荷载等级/MPa
    干路 支路 巷路
    水泥稳定材料、水泥固化土、石灰-水泥固化土、复合胶结料固化土 基层 g 2.0~4.0
    d 2.0~4.0 1.0~3.0
    面层 d ≥4.0 ≥3.5 ≥2.5
    下载: 导出CSV

    表  11  公路固化土等级要求

    Table  11.   Grade requirements for highway solidified soils

    固化土等级 结构层 道路等级 荷载级别
    极重、特重交通 重交通 中、轻交通
    六级[5.0,+∞)MPa 基层 高速、一级公路
    二级及以下公路
    底基层 高速、一级公路
    二级及以下公路
    五级[4.0,5.0)MPa 基层 高速、一级公路
    二级及以下公路
    底基层 高速、一级公路
    二级及以下公路
    四级[3.0,4.0)MPa 基层 高速、一级公路
    二级及以下公路
    底基层 高速、一级公路
    二级及以下公路
    三级[2.5,3.0)MPa 基层 高速、一级公路
    二级及以下公路
    底基层 高速、一级公路
    二级及以下公路
    下载: 导出CSV

    表  12  城镇道路固化土等级要求

    Table  12.   Grade requirements for urban road solidified soils

    固化土等级 结构层 荷载级别
    极重、特重交通 重交通 中、轻交通
    六级
    [5.0,+∞)MPa
    上基层
    下基层
    五级
    [4.0,5.0)MPa
    上基层
    下基层
    四级
    [3.0,4.0)MPa
    上基层
    下基层
    三级
    [2.0,3.0)MPa
    上基层
    下基层
    下载: 导出CSV

    表  13  乡村道路固化土等级要求

    Table  13.   Grade requirements for country road solidified soils

    固化土等级 结构层 荷载级别
    干路 支路 巷路
    六级
    [5.0,+∞)MPa
    面层
    基层
    五级
    [4.0,5.0)MPa
    面层
    基层
    四级
    [3.0,4.0)MPa
    面层
    基层
    三级三级
    [2.0,3.0)MPa
    面层
    基层
    下载: 导出CSV
  • [1] 张正一, 王朝辉, 张廉, 等. 中国绿色公路建设与评估技术[J]. 长安大学学报(自然科学版), 2018, 38(5): 76-86. https://www.cnki.com.cn/Article/CJFDTOTAL-XAGL201805011.htm

    ZHANG Zheng-yi, WANG Chao-hui, ZHANG Lian, et al. Construction and assessment technology of green road in China[J]. Journal of Chang'an University (Natural Science Edition), 2018, 38(5): 76-86. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XAGL201805011.htm
    [2] 高志伟, 刘鲁清, 肖绪荡, 等. 热阻沥青混合料研究进展[J]. 长安大学学报(自然科学版), 2020, 40(1): 125-134. https://www.cnki.com.cn/Article/CJFDTOTAL-XAGL202001013.htm

    GAO Zhi-wei, LIU Lu-qing, XIAO Xu-dang, et al. Research progress of thermal resistance asphalt mixture[J]. Journal of Chang'an University (Natural Science Edition), 2020, 40(1): 125-134. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XAGL202001013.htm
    [3] 王朝辉, 刘鲁清, 韩晓霞, 等. 路用多孔页岩陶粒表面修饰优化[J]. 中国公路学报, 2019, 32(4): 196-206. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL201904018.htm

    WANG Chao-hui, LIU Lu-qing, HAN Xiao-xia, et al. Optimization of surface modification of porous expanded shale[J]. China Journal of Highway and Transport, 2019, 32(4): 196-206. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL201904018.htm
    [4] 樊恒辉, 高建恩, 吴普特. 土壤固化剂研究现状与展望[J]. 西北农林科技大学学报(自然科学版), 2006, 34(2): 141-146, 152. https://www.cnki.com.cn/Article/CJFDTOTAL-XBNY200602029.htm

    FAN Heng-hui, GAO Jian-en, WU Pu-te. Prospect of researches on soil stabilizer[J]. Journal of Northwest Science Technology University of Agriculture and Forestry (Natural Science Edition), 2006, 34(2): 141-146, 152. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XBNY200602029.htm
    [5] 米吉福, 汪浩, 刘晶冰, 等. 土壤固化剂的研究及应用进展[J]. 材料导报, 2017, 31(增1): 388-391, 401. https://www.cnki.com.cn/Article/CJFDTOTAL-CLDB2017S1085.htm

    MI Ji-fu, WANG Hao, LIU Jing-bing, et al. Research and application progress of soil stabilizer[J]. Materials Review. 2017, 31(S1): 388-391, 401. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-CLDB2017S1085.htm
    [6] 张冠华, 牛俊, 孙金伟, 等. 土壤固化剂及其水土保持应用研究进展[J]. 土壤, 2018, 50(1): 28-34. https://www.cnki.com.cn/Article/CJFDTOTAL-TURA201801004.htm

    ZHANG Guan-hua, NIU Jun, SUN Jin-wei, et al. Soil stabilizer and its application in soil and water conservation: a review[J]. Soils, 2018, 50(1): 28-34. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TURA201801004.htm
    [7] 李沛, 杨武, 邓永锋, 等. 土壤固化剂发展现状和趋势[J]. 路基工程, 2014(3): 1-8. https://www.cnki.com.cn/Article/CJFDTOTAL-LJGC201403001.htm

    LI Pei, YANG Wu, DENG Yong-feng, et al. Status quo and trend of soil stabilizer development[J]. Subgrade Engineering, 2014(3): 1-8. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-LJGC201403001.htm
    [8] 周永祥, 阎培渝. 土壤加固技术及其发展[J]. 铁道科学与工程学报, 2006, 3(4): 35-40. https://www.cnki.com.cn/Article/CJFDTOTAL-CSTD200604006.htm

    ZHOU Yong-xiang, YAN Pei-yu. Soil reinforcement techniques and their evolvement[J]. Journal of Railway Science and Engineering, 2006, 3(4): 35-40. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-CSTD200604006.htm
    [9] 王银梅, 高立成. 黄土化学改良试验研究[J]. 工程地质学报, 2012, 20(6): 1071-1077. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ201206028.htm

    WANG Yin-mei, GAO Li-cheng. Experimental research on chemical improvement of loess[J]. Journal of Engineering Geology, 2012, 20(6): 1071-1077. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ201206028.htm
    [10] 周海龙, 申向东. 土壤固化剂的应用研究现状与展望[J]. 材料导报, 2014, 28(9): 134-138. https://www.cnki.com.cn/Article/CJFDTOTAL-CLDB201409030.htm

    ZHOU Hai-long, SHEN Xiang-dong. Application research situation and prospect of soil stabilizer[J]. Materials Review, 2014, 28(9): 134-138. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-CLDB201409030.htm
    [11] 力乙鹏, 李婷. 土壤固化剂的固化机理与研究进展[J]. 材料导报, 2020, 34(增2): 1273-1277, 1298. https://www.cnki.com.cn/Article/CJFDTOTAL-CLDB2020S2056.htm

    LI Yi-peng, LI Ting. Stability mechanism and research progress of soil stabilizer[J]. Materials Reports, 2020, 34(S2): 1273-1277, 1298. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-CLDB2020S2056.htm
    [12] REZAEIMALEK S, NASOURI A, HUANG Jie, et al. Comparison of short-term and long-term performances for polymer-stabilized sand and clay[J]. Journal of Traffic and Transportation Engineering (English Edition), 2017, 4(2): 145-155. doi: 10.1016/j.jtte.2017.01.003
    [13] ZHU Yan, YU Xiang-juan, GAO Lei, et al. Unconfined compressive strength of aqueous polymer-modified saline soil[J]. International Journal of Polymer Science, 2019, 2019: 1-11.
    [14] KOLAY P K, DHAKAL B. Geotechnical properties and microstructure of liquid polymer amended fine-grained soils[J]. Geotechnical and Geological Engineering, 2020, 38(3): 2479-2491. doi: 10.1007/s10706-019-01163-x
    [15] ONYEJEKWE S, GHATAORA G S. Effect of fiber inclusions on flexural strength of soils treated with nontraditional additives[J]. Journal of Materials in Civil Engineering, 2014, 26(8): 04014039. doi: 10.1061/(ASCE)MT.1943-5533.0000922
    [16] 刘竹, 关大博, 魏伟. 中国二氧化碳排放数据核算[J]. 中国科学: 地球科学, 2018, 48(7): 878-887. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201807005.htm

    LIU Zhu, GUAN Da-bo, WEI Wei. Carbon emission accounting in China[J]. Scientia Sinica (Terrae), 2018, 48(7): 878-887. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201807005.htm
    [17] 朱淑瑛, 刘惠, 董金池, 等. 中国水泥行业二氧化碳减排技术及成本研究[J]. 环境工程, 2021, 39(10): 15-22. https://www.cnki.com.cn/Article/CJFDTOTAL-HJGC202110003.htm

    ZHU Shu-ying, LIU Hui, DONG Jin-chi, et al. Mitigation technologies and marginal abatement cost curves for cement industry in China[J]. Environmental Engineering, 2021, 39(10): 15-22. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HJGC202110003.htm
    [18] 张桂珍. 水泥生产过程中二氧化碳减排潜力分析[J]. 四川水泥, 2016(2): 5. doi: 10.3969/j.issn.1007-6344.2016.02.005

    ZHANG Gui-zhen. Potential analysis of carbon dioxide emission reduction in cement production[J]. Sichuan Cement, 2016(2): 5. (in Chinese) doi: 10.3969/j.issn.1007-6344.2016.02.005
    [19] ZUBERI M J S, PATEL M K. Bottom-up analysis of energy efficiency improvement and CO2 emission reduction potentials in the Swiss cement industry[J]. Journal of Cleaner Production, 2017, 142: 4294-4309. doi: 10.1016/j.jclepro.2016.11.178
    [20] 何峰, 刘峥延, 邢有凯, 等. 中国水泥行业节能减排措施的协同控制效应评估研究[J]. 气候变化研究进展, 2021, 17(4): 400-409. https://www.cnki.com.cn/Article/CJFDTOTAL-QHBH202104003.htm

    HE Feng, LIU Zheng-yan, XING You-kai, et al. Co-control effect evaluation of the energy saving and emission reduction measures in Chinese cement industry[J]. Climate Change Research, 2021, 17(4): 400-409. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-QHBH202104003.htm
    [21] LIU Zhu, CIAIS P, DENG Zhu, et al. Carbon monitor, a near-real-time daily dataset of global CO2 emission from fossil fuel and cement production[J]. Scientific Data, 2020, 7: 392. doi: 10.1038/s41597-020-00708-7
    [22] 刘姚君, 汪澜. 水泥窑协同处置固体废物技术减排潜力与成本分析[J]. 水泥, 2018(3): 11-14. https://www.cnki.com.cn/Article/CJFDTOTAL-SNIZ201803005.htm

    LIU Yao-jun, WANG Lan. Emission reducing potential and cost analysis of technology of co-processing of hazardous wastes in cement kilns[J]. Cement, 2018(3): 11-14. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SNIZ201803005.htm
    [23] 孟建伟, 华苏东, 姚晓. 废渣基土壤固化剂与不同土质的适应性研究[J]. 新型建筑材料, 2016, 43(8): 77-80, 91. https://www.cnki.com.cn/Article/CJFDTOTAL-XXJZ201608023.htm

    MENG Jian-wei, HUA Su-dong, YAO Xiao. Research on the adaptation to different soils with waste residue-based soil solidification agent[J]. New Building Materials, 2016, 43(8): 77-80, 91. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XXJZ201608023.htm
    [24] 王银梅, 韩文峰, 谌文武. 新型高分子固化材料与水泥加固黄土力学性能对比研究[J]. 岩土力学, 2004, 25(11): 1761-1765. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX200411019.htm

    WANG Yin-mei, HAN Wen-feng, CHEN Wen-wu. Research on comparison between mechanical behaviors of loess solidified with new polymer material and cement[J]. Rock and Soil Mechanics, 2004, 25(11): 1761-1765. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX200411019.htm
    [25] 户轩庆. 生物酶固化剂在边坡工程中的试验研究[D]. 沈阳: 沈阳大学, 2018.

    HU Xuan-qing. The experimental study on soil stabilizer of biological enzyme in slope engineering[D]. Shenyang: Shenyang University, 2018. (in Chinese)
    [26] 杨林, 朱金莲. 冻融条件TG固化剂石灰土无侧限抗压强度影响因素试验研究[J]. 中外公路, 2016, 36(5): 238-242. https://www.cnki.com.cn/Article/CJFDTOTAL-GWGL201605054.htm

    YANG Lin, ZHU Jin-lian. Experimental study on influencing factors of unconfined compressive strength of lime soil with TG curing agent under freezing and thawing conditions[J]. Journal of China and Foreign Highway, 2016, 36(5): 238-242. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GWGL201605054.htm
    [27] LIU Jin, SHI Bin, JIANG Hong-tao, et al. Research on the stabilization treatment of clay slope topsoil by organic polymer soil stabilizer[J]. Engineering Geology, 2011, 117(1/2): 114-120.
    [28] 张春东, 丁永明, 苗华, 等. EFS固化道路基层路用性能试验研究[J]. 施工技术, 2020, 49(3): 14-17. https://www.cnki.com.cn/Article/CJFDTOTAL-SGJS202003004.htm

    ZHANG Chun-dong, DING Yong-ming, MIAO Hua, et al. Experimental study on pavement performance of EFS solidified road subgrade[J]. Construction Technology, 2020, 49(3): 14-17. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SGJS202003004.htm
    [29] IYENGAR S R, MASAD E, RODRIGUEZ A K, et al. Pavement subgrade stabilization using polymers: characterization and performance[J]. Journal of Materials in Civil Engineering, 2013, 25(4): 472-483.
    [30] KUSHWAHA P, CHAUHAN A S, SWAMI S, et al. Investigating the effects of nanochemical-based ionic stabilizer and co-polymer on soil properties for pavement construction[J]. International Journal of Geotechnical Engineering, 2021, 15(3): 379-388.
    [31] 李焕弟, 缴锡云, 李江, 等. 基于MICP及EICP技术的土壤固化试验研究[J]. 灌溉排水学报, 2021, 40(7): 59-65. https://www.cnki.com.cn/Article/CJFDTOTAL-GGPS202107009.htm

    LI Huan-di, JIAO Xi-yun, LI Jiang, et al. Using microbe-induced calcite precipitation and enzyme-induced carbonate precipitation to cement slopes of earth ditches[J]. Journal of Irrigation and Drainage, 2021, 40(7): 59-65. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GGPS202107009.htm
    [32] 李元元, 王占礼, 刘俊娥, 等. 喷施中性多聚糖对黄土坡面降雨入渗的影响[J]. 土壤学报, 2017, 54(4): 844-853. https://www.cnki.com.cn/Article/CJFDTOTAL-TRXB201704005.htm

    LI Yuan-yuan, WANG Zhan-li, LIU Jun-e, et al. Effect of spraying jag S on rain water infiltration on loess slope[J]. Acta Pedologica Sinica, 2017, 54(4): 844-853. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TRXB201704005.htm
    [33] 姬红利, 颜蓉, 李运东, 等. 施用土壤改良剂对磷素流失的影响研究[J]. 土壤, 2011, 43(2): 203-209. https://www.cnki.com.cn/Article/CJFDTOTAL-TURA201102010.htm

    JI Hong-li, YAN Rong, LI Yun-dong, et al. Effects of soil ameliorants on phosphorus loss[J]. Soils, 2011, 43(2): 203-209. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TURA201102010.htm
    [34] 杨明坤, 王芳辉, 姚洋, 等. 一种新型环保固沙剂的制备与性能研究[J]. 材料研究学报, 2012, 26(3): 225-230. https://www.cnki.com.cn/Article/CJFDTOTAL-CYJB201203002.htm

    YANG Ming-kun, WANG Fang-hui, YAO Yang, et al. Preparation and sanding-fixing properties of a new-type environment friendly sand-fixing agent[J]. Chinese Journal of Materials Research, 2012, 26(3): 225-230. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-CYJB201203002.htm
    [35] DAVIDOVITS J. Geopolymer chemistry and sustainable development[C]//Geopolymer Institute: Proceedings of the World Congress Geopolymer. Saint-Quentin: Geopolymer Institute, 2005: 9-15.
    [36] LATIFI N, HORPIBULSUK S, MEEHAN C L, et al. Improvement of problematic soils with biopolymer—an environmentally friendly soil stabilizer[J]. Journal of Materials in Civil Engineering, 2017, 29(2): 04016204.
    [37] LATIFI N, MARTO A, EISAZADEH A. Physicochemical behavior of tropical laterite soil stabilized with non-traditional additive[J]. Acta Geotechnica, 2016, 11(2): 433-443. doi: 10.1007/s11440-015-0370-3
    [38] LATIFI N, MARTO A, EISAZADEH A. Structural characteristics of laterite soil treated by SH-85 and TX-85 (non-traditional) stabilizer[J]. Electronic Journal of Geotechnical Engineering, 2013, 18: 1707-1718.
    [39] HUANG Jian-xin, KOGBARA R B, HARIHARAN N, et al. A state-of-the-art review of polymers used in soil stabilization[J]. Construction and Building Materials, 2021, 305: 124685.
    [40] 刘世皎, 樊恒辉, 史祥, 等. BCS土壤固化剂固化土的耐久性研究[J]. 西北农林科技大学学报(自然科学版), 2014, 42(12): 214-220. https://www.cnki.com.cn/Article/CJFDTOTAL-XBNY201412032.htm

    LIU Shi-jiao, FAN Heng-hui, SHI Xiang, et al. Durability of stabilized soil by BCS[J]. Journal of Northwest A & F University (Natural Science Edition), 2014, 42(12): 214-220. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XBNY201412032.htm
    [41] 刘蕾, 姚勇, 陈代果, 等. EFS固化道路基层经济指标分析[J]. 施工技术, 2020, 49(3): 22-25. https://www.cnki.com.cn/Article/CJFDTOTAL-SGJS202003006.htm

    LIU Lei, YAO Yong, CHEN Dai-guo, et al. Analysis of economic indicators of EFS solidified road subgrade[J]. Construction Technology, 2020, 49(3): 22-25. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SGJS202003006.htm
    [42] 鲁惠中. 利用响应面中心组合法固化淮南瓦埠湖软土优化研究[D]. 合肥: 安徽建筑大学, 2020.

    LU Hui-zhong. Optimization research for stablizing the wabu lake soft soil in Huainan using central composite design of response surface methodology[D]. Hefei: Anhui Jianzhu University, 2020. (in Chinese)
    [43] LIU Jin, WANG Yong, LU Yi, et al. Effect of polyvinyl acetate stabilization on the swelling-shrinkage properties of expansive soil[J]. International Journal of Polymer Science, 2017, 2017: 1-8. https://www.hindawi.com/journals/ijps/2017/8128020/
    [44] LIU Jin, CHEN Zhi-hao, KANUNGO D P, et al. Topsoil reinforcement of sandy slope for preventing erosion using water-based polyurethane soil stabilizer[J]. Engineering Geology, 2019, 252: 125-135.
    [45] LIU Jin, CHEN Zhi-hao, SONG Ze-zhuo, et al. Tensile behavior of polyurethane organic polymer and polypropylene fiber-reinforced sand[J]. Polymers, 2018, 10(5): 499.
    [46] LIU Jin, QI Xiao-hui, ZHANG Da, et al. Study on the permeability characteristics of polyurethane soil stabilizer reinforced sand[J]. Advances in Materials Science and Engineering, 2017, 2017: 1-14. https://www.hindawi.com/journals/amse/2017/5240186/
    [47] MOHAMED S W A. Stabilization of desert sand using water-borne polymers[D]. Al Ain: United Arab Emirates University, 2004.
    [48] ZHANG Tao, LIU Song-yu, CAI Guo-jun, et al. Experimental investigation of thermal and mechanical properties of lignin treated silt[J]. Engineering Geology, 2015, 196: 1-11. https://www.sciencedirect.com/science/article/pii/S0013795215300120
    [49] INDRARATNA B, MUTTUVEL T, KHABBAZ H, et al. Predicting the erosion rate of chemically treated soil using a process simulation apparatus for internal crack erosion[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2008, 134(6): 837-844. doi: 10.1061/(ASCE)1090-0241(2008)134:6(837)
    [50] CHANG I, IM J, CHO G C. Geotechnical engineering behaviors of gellan gum biopolymer treated sand[J]. Canadian Geotechnical Journal, 2016, 53(10): 1658-1670.
    [51] 何国平, 蔡天德, 陈双, 等. 土质固化剂对水泥土力学特性的影响及机理研究[J]. 中国测试, 2021, 47(6): 63-67. https://www.cnki.com.cn/Article/CJFDTOTAL-SYCS202106011.htm

    HE Guo-ping, CAI Tian-de, CHEN Shuang, et al. Research on the effect and mechanism of soil curing agent on mechanical properties of cement soil[J]. China Measurement & Test, 2021, 47(6): 63-67. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SYCS202106011.htm
    [52] LUO Xiao-hua, XU Wen-yi, QIU Xin, et al. Exploring the microstructure characteristics and mechanical behavior of the ionic soil stabilizer-treated clay[J]. Arabian Journal of Geosciences, 2020, 13(15): 729.
    [53] 吴雪婷, 齐一, 吴迪, 等. EN-1型离子土固化剂固土效果对比研究[J]. 工程勘察, 2021, 49(8): 1-7. https://www.cnki.com.cn/Article/CJFDTOTAL-GCKC202108001.htm

    WU Xue-ting, QI Yi, WU Di, et al. Comparative study on the effect of EN-1 ionic soil stabilizer on soil solidification[J]. Geotechnical Investigation & Surveying, 2021, 49(8): 1-7. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GCKC202108001.htm
    [54] 吴雪婷, 程明峰, 唐杉, 等. ISS—水泥联合固化淤泥的微观机理研究[J]. 工程勘察, 2020, 48(1): 14-19. https://www.cnki.com.cn/Article/CJFDTOTAL-GCKC202001004.htm

    WU Xue-ting, CHENG Ming-feng, TANG Shan, et al. Micro-mechanism of combined solidification for silt with ISS and cement[J]. Geotechnical Investigation & Surveying, 2020, 48(1): 14-19. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GCKC202001004.htm
    [55] ROBERTS K, KOWALEWSKA J, FRIBERG S. The influence of interactions between hydrolyzed aluminum ions and polyacrylamides on the sedimentation of kaolin suspensions[J]. Journal of Colloid and Interface Science, 1974, 48(3): 361-367. https://www.sciencedirect.com/science/article/pii/0021979774901787
    [56] ZHI Xi-lan, WANG Wei-na, CAI Yi-chang. Cost-benefit timing for applying slurry seal on actual roadway tests in China[J]. Journal of Central South University, 2012, 19(8): 2394-2402. doi: 10.1007/s11771-012-1287-8
    [57] 杨青, 罗小花, 邱欣, 等. 离子土壤固化剂固化土的微观结构特征及固化机理研究[J]. 公路交通科技, 2015, 32(11): 33-40. https://www.cnki.com.cn/Article/CJFDTOTAL-GLJK201511006.htm

    YANG Qing, LUO Xiao-hua, QIU Xin, et al. Analysis of microstructure characteristics and stabilization mechanism of ionic soil stabilizer treated clay[J]. Journal of Highway and Transportation Research and Development, 2015, 32(11): 33-40. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GLJK201511006.htm
    [58] 游庆龙, 邱欣, 杨青, 等. 离子土壤固化剂固化红黏土强度特性[J]. 中国公路学报, 2019, 32(5): 64-71. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL201905007.htm

    YOU Qing-long, QIU Xin, YANG Qing, et al. Strength properties of ionic soil stabilizer treated red soil[J]. China Journal of Highway and Transport, 2019, 32(5): 64-71. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL201905007.htm
    [59] 杨富民, 何军利, 孙成晓, 等. TK-G型液体土壤固化剂的研制及其固化机理[J]. 科学技术与工程, 2019, 19(5): 242-246. https://www.cnki.com.cn/Article/CJFDTOTAL-KXJS201905037.htm

    YANG Fu-min, HE Jun-li, SUN Cheng-xiao, et al. Development and curing mechanism of TK-G soil solidified agent[J]. Science Technology and Engineering, 2019, 19(5): 242-246. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-KXJS201905037.htm
    [60] 吕寒雪, 冯瑞莹, 王浩. 土壤固化剂在现代路面基层和底基层中的应用[J]. 环渤海经济瞭望, 2019(7): 198-200. https://www.cnki.com.cn/Article/CJFDTOTAL-HBHJ201907146.htm

    LYU Han-xue, FENG Rui-ying, WANG Hao. Application of soil curing agent in modern pavement base and subbase[J]. Economic Outlook the Bohai Sea, 2019(7): 198-200. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HBHJ201907146.htm
    [61] MOEN D E, RICHARDSON J L. Ultrasonic dispersion of soil aggregates stabilized by polyvinyl alcohol and T403-glyoxal polymers[J]. Soil Science Society of America Journal, 1984, 48(3): 628-631.
    [62] RICHARDSON J L, GUNNERSON W T, GILES J F. Influence of in situ two-phase polymers on aggregate stabilization in various textured North Dakota soils[J]. Canadian Journal of Soil Science, 1987, 67(1): 209-213.
    [63] EUJINE G N, SOMERVELL L T, CHANDRAKARAN S, et al. Enzyme stabilization of high liquid limit clay[J]. 2014, 19: 6989-6995.
    [64] 孟子龙. 生物酶固化技术在道路基层中的应用研究[D]. 长沙: 长沙理工大学, 2012.

    MENG Zi-long. The research on application of bio-enzyme stabilizer on road base construction[D]. Changsha: Changsha University of Science & Technology, 2012. (in Chinese)
    [65] CHANG I, LEE M, TRAN T P A, et al. Review on biopolymer-based soil treatment (BPST) technology in geotechnical engineering practices[J]. Transportation Geotechnics, 2020, 24: 100385.
    [66] CABALAR A F, AWRAHEEM M H, KHALAF M M. Geotechnical properties of a low-plasticity clay with biopolymer[J]. Journal of Materials in Civil Engineering, 2018, 30(8): 04018170.
    [67] 孙振平, 吕文斌, 孙广花. 派酶改善土壤密实性和强度的效果及其机理研究[J]. 新型建筑材料, 2010, 37(10): 87-90. https://www.cnki.com.cn/Article/CJFDTOTAL-XXJZ201010030.htm

    SUN Zhen-ping, LYU Wen-bin, SUN Guang-hua. Investigation on the enhancing efficiency and acting mechanism of PERMA-ZYME on densification and strength of soil[J]. New Building Materials, 2010, 37(10): 87-90. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XXJZ201010030.htm
    [68] GHADIR P, RANJBAR N. Clayey soil stabilization using geopolymer and Portland cement[J]. Construction and Building Materials, 2018, 188: 361-371. https://www.sciencedirect.com/science/article/pii/S0950061818318798
    [69] LATIFI N, EISAZADEH A, MARTO A. Strength behavior and microstructural characteristics of tropical laterite soil treated with sodium silicate-based liquid stabilizer[J]. Environmental Earth Sciences, 2014, 72(1): 91-98. doi: 10.1007/s12665-013-2939-1
    [70] YU Jia-ren, CHEN Yong-hui, CHEN Geng, et al. Experimental study of the feasibility of using anhydrous sodium metasilicate as a geopolymer activator for soil stabilization[J]. Engineering Geology, 2020, 264: 105316.
    [71] ZHANG Mo, GUO Hong, EL-KORCHI T, et al. Experimental feasibility study of geopolymer as the next-generation soil stabilizer[J]. Construction and Building Materials, 2013, 47: 1468-1478. https://www.sciencedirect.com/science/article/pii/S0950061813005357
    [72] ZHANG Mo, ZHAO Meng-xuan, ZHANG Guo-ping, et al. Calcium-free geopolymer as a stabilizer for sulfate-rich soils[J]. Applied Clay Science, 2015, 108: 199-207. https://www.sciencedirect.com/science/article/pii/S0169131715000897
    [73] DU Yan-jun, YU Bo-wei, JIANG Ning-jun, et al. Physical, hydraulic, and mechanical properties of clayey soil stabilized by lightweight alkali-activated slag geopolymer[J]. Journal of Materials in Civil Engineering, 2017, 29(2): 04016217.
    [74] BILONDI M P, TOUFIGH M M, TOUFIGH V. Experimental investigation of using a recycled glass powder-based geopolymer to improve the mechanical behavior of clay soils[J]. Construction and Building Materials, 2018, 170: 302-313. https://www.sciencedirect.com/science/article/pii/S0950061818305324
    [75] 徐学分, 潘志华, 李洪马. SG-1型土壤固化剂固化土的实验研究[J]. 材料导报, 2014, 28(16): 126-129. https://www.cnki.com.cn/Article/CJFDTOTAL-CLDB201416032.htm

    XU Xue-fen, PAN Zhi-hua, LI Hong-ma. Experimental study on soil stabilized by SG-1 soil stabilizer[J]. Materials Review, 2014, 28(16): 126-129. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-CLDB201416032.htm
    [76] 陈明明, 黄伟, 邱鹏, 等. 离子型土壤固化剂固化土基层试验研究[J]. 安徽工业大学学报(自然科学版), 2021, 38(1): 97-103. https://www.cnki.com.cn/Article/CJFDTOTAL-HDYX202101014.htm

    CHEN Ming-ming, HUANG Wei, QIU Peng, et al. Experimental study on solidification of soil base with ionic soil solidification agent[J]. Journal of Anhui University of Technology (Natural Science), 2021, 38(1): 97-103. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HDYX202101014.htm
    [77] 邢明亮, 梁志豪, 关博文, 等. 离子型土壤固化剂在公路工程应用中均匀性评价与控制[J]. 公路, 2019, 64(10): 34-40. https://www.cnki.com.cn/Article/CJFDTOTAL-GLGL201910007.htm

    XING Ming-liang, LIANG Zhi-hao, GUAN Bo-wen, et al. Evaluation and control of uniformity of ionic soil curing agent in highway project application[J]. Highway, 2019, 64(10): 34-40. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GLGL201910007.htm
    [78] ZANDIEH A R, YASROBI S S. Study of factors affecting the compressive strength of sandy soil stabilized with polymer[J]. Geotechnical and Geological Engineering, 2010, 28(2): 139-145.
    [79] MARTO A, LATIFI N, SOHAEI H. Stabilization of laterite soil using GKS soil stabilizer[J]. Electronic Journal of Geotechnical Engineering, 2013, 18 C: 521-532.
    [80] 杨林, 张秉夏. TG-2型土壤固化剂水泥石灰土的强度和稳定性试验[J]. 公路交通科技, 2013, 30(9): 27-32. https://www.cnki.com.cn/Article/CJFDTOTAL-GLJK201309005.htm

    YANG Lin, ZHANG Bing-xia. Strength and stability test for cement-lime stabilized clay with TG-2 soil solidifying agent[J]. Journal of Highway and Transportation Research and Development, 2013, 30(9): 27-32. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GLJK201309005.htm
    [81] ANAGNOSTOPOULOS C A, KANDILIOTIS P, LOLA M, et al. Improving properties of sand using epoxy resin and electrokinetics[J]. Geotechnical and Geological Engineering, 2014, 32(4): 859-872. doi: 10.1007/s10706-014-9763-6
    [82] 江臣, 施斌, 刘发, 等. 宁淮高速公路膨胀土边坡生态土壤稳定剂土质改性试验研究[J]. 防灾减灾工程学报, 2009, 29(5): 507-512. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXK200905007.htm

    JIANG Chen, SHI Bin, LIU Fa, et al. Study on soil improvement of expansive soil slope with ecotypic soil stabilizer in Ning-Huai expressway[J]. Journal of Disaster Prevention and Mitigation Engineering, 2009, 29(5): 507-512. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DZXK200905007.htm
    [83] CHANG I, CHO G C. Strengthening of Korean residual soil with β-1, 3/1, 6-glucan biopolymer[J]. Construction and Building Materials, 2012, 30: 30-35.
    [84] SUJATHA E R, SAISREE S. Geotechnical behaviour of guar gum-treated soil[J]. Soils and Foundations, 2019, 59(6): 2155-2166.
    [85] 蒋亮. 长寿命沥青路面基层适应性以及设计与施工控制一体化研究[D]. 西安: 长安大学, 2007.

    JIANG Liang. Study on basement adaptability and integration of basement design and construction of long-life asphalt pavement[D]. Xi'an: Chang'an University, 2007. (in Chinese)
  • 加载中
图(16) / 表(13)
计量
  • 文章访问数:  2676
  • HTML全文浏览量:  905
  • PDF下载量:  250
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-12-20
  • 刊出日期:  2023-04-25

目录

    /

    返回文章
    返回