Optimization on evaluation indicators of asphalt pavement surface segregation based on smartphone image acquisition method
-
摘要: 为优选沥青路面表面离析评价指标,室内成型了3种不同级配类型的沥青混合料车辙板试件;采用智能手机,提出了一种图像采集方法,获取了沥青混合料表面图像;基于盒子分形维数和多重分形谱算法计算试件表面二值图像的分形维数和多重分形谱指标,依托Image-Pro Plus图像处理软件提取二值图像凹形分布百分数和宏观构造宽度指标,采用室内铺砂法测试表面构造深度,计算平均构造深度来评价沥青混合料表面离析;分析了不同级配组成沥青混合料表面凹形区域分布特征,研究了沥青混合料表面离析评价指标间灰关联熵。研究结果表明:基于智能手机来获取二值图像的可靠性分析误差率不超过3%,说明基于智能手机获取试件表面图像方法具有较高可重复性;沥青混合料表面凹形构造具有显著分形特征,集料颗粒粒径越大,表面构造分形越复杂;基于图像处理方法的沥青路面表面离析评价指标与平均构造深度指标间存在线性相关性,但相关程度不一;同一级配沥青混合料表面分形特征指标计算误差范围较大,而凹形分布百分数指标误差范围最小,仅为±1.89%,且其与平均构造深度指标的熵关联度最高,为0.996 2,其次分别是多重分形谱、分型维数和宏观构造宽度指标;综合考虑推荐沥青混合料表面凹形分布百分数可作为可靠的表面离析评价指标。Abstract: In order to optimize the evaluation indicators of asphalt pavement surface segregation, three different gradation types of asphalt mixture slab specimens were prepared in laboratory. An image acquisition method was proposed to obtain the surface images of asphalt mixture by using smartphone. The box-counting method and multifractal spectrum algorithm were used to calculate the fractal dimension and multifractal spectrum indexes of the binary image. Image-Pro Plus software was adopted to extract the concave distribution percentage and macro-structure width. The surface texture depth was tested by using the indoor sand patching method, and the mean texture depth was calculated to evaluate asphalt mixture surface segregation. The concave distribution characteristics of asphalt mixture surfaces with different gradations were analyzed. The grey relational entropy of the evaluation indicators of asphalt mixture surface segregation was studied. Research results show that the error rate of reliability analysis for obtaining binary images based on smartphones is less than 3%, indicating that the obtaining method has high repeatability. The concave asphalt mixed surface has considerable fractal characteristic, the larger the aggregate particle size, the more complex surface structure analysis is. There is a linear correlation between the evaluation indicators of asphalt pavement surface segregation based on image processing method and the mean texture depth, but the correlation varies. The surface fractal characteristic indicator of the identical asphalt mixture has wide error range, however, the concave distribution percentage index has a minimum error range, changing from -1.89% to 1.89%. The entropy correlation degree between concave distribution percentage and mean texture depth is highest, which is 0.996 2, and followed by the indexes of multifractal spectrum, fractal dimension and macro-structure width. Thus, the concave distribution percentage is recommended as a reliable indicator for evaluating asphalt mixture surface segregate.
-
表 1 智能手机获取图像的可重复性
Table 1. Repeatability of images captured by smartphone
统计指标 不同测试次数的指标及其误差 1 2 3 σ/mm 0.385 7 0.369 4 0.366 3 σ的相对误差 0.031 7 0.011 7 0.020 0 R/mm 0.355 5 0.335 9 0.329 5 R的相对误差 0.044 5 0.012 9 0.031 6 H/mm 1.000 0 1.000 0 1.000 0 H的相对误差 0.000 0 0.000 0 0.000 0 S 1.508 0 1.422 1 1.462 1 S的相对误差 0.030 0 0.028 7 0.001 3 F 1.837 7 1.801 2 1.792 4 F的相对误差 0.015 1 0.005 1 0.010 0 Δα 1.649 1 1.611 9 1.627 3 Δα的相对误差 0.012 1 0.010 8 0.001 3 Δf(α)/像素 1.157 8 1.144 1 1.124 0 Δf(α)的相对误差 0.013 9 0.001 9 0.015 7 e 1.904 2 1.950 0 1.967 0 e的相对误差 0.018 7 0.004 9 0.013 7 K/像素 40.96 38.97 41.35 K的相对误差 0.013 2 0.036 0 0.022 8 表 2 凹形分布多重分形谱参数
Table 2. Multifractal spectral parameters of concave distribution
多重分形谱参数 不同q取值范围下的参数取值 -2~2 -4~4 -6~6 -8~8 αmax 3.482 8 3.511 7 3.512 2 3.512 2 f(αmax)/像素 0.987 7 0.914 6 0.912 7 0.912 7 αmin 1.846 0 1.840 6 1.840 6 1.840 6 f(αmin)/像素 1.839 8 1.825 8 1.825 5 1.825 5 Δα 1.636 8 1.671 1 1.671 6 1.671 6 Δf(α)/像素 0.852 1 0.911 2 0.912 8 0.912 8 表 3 m、F、Δα、Δf(α)、e、K指标计算数据
Table 3. Computational data of m, F, Δα, Δf(α), e and K
指标 指标参数 m F Δα Δf(α)/像素 e K/像素 沥青混合料 O10 1.015 0 1.804 8 1.633 9 1.009 7 0.536 7 33.438 3 O13 1.784 3 1.844 6 1.616 7 1.305 3 2.610 5 57.572 5 O16 2.160 0 1.844 8 1.629 3 1.320 9 3.056 9 50.271 5 S10 0.693 8 1.787 6 1.625 9 1.093 8 0.779 7 33.978 9 S13 0.956 6 1.817 0 1.617 4 1.234 9 1.632 3 37.803 4 S16 1.005 9 1.812 0 1.644 5 1.263 5 1.508 0 43.809 5 A10 0.333 2 1.758 6 1.622 7 1.032 3 0.388 1 27.492 7 A13 0.523 6 1.755 7 1.597 9 0.996 8 0.255 4 27.802 9 A16 0.581 9 1.771 0 1.592 2 1.099 5 0.567 1 30.551 7 表 4 数据归一化结果
Table 4. Data normalization results
指标参数 O10 O13 O16 S10 S13 S16 A10 A13 A16 m 0.93 2.34 1.98 0.64 0.88 0.92 0.31 0.48 0.53 F 1.01 1.00 1.03 1.00 1.01 1.01 0.98 0.98 0.99 e 0.46 1.57 2.60 0.66 1.39 1.28 0.33 0.22 0.48 Δα 0.94 1.51 0.94 0.94 0.93 0.95 0.94 0.92 0.92 Δf(α)/像素 0.85 1.36 1.11 0.92 1.04 1.07 0.87 0.84 0.93 K/像素 1.05 0.04 1.58 1.07 1.19 1.38 0.86 0.87 0.96 表 5 m与F、Δα、Δf(α)、e、K的灰关联系数
Table 5. Gray relational coefficients between m and F, Δα, Δf(α), e and K
指标参数 O10 O13 O16 S10 S13 S16 A10 A13 A16 F 0.95 0.47 0.56 0.77 0.90 0.94 0.64 0.71 0.73 e 0.72 0.61 0.66 0.99 0.70 0.77 0.99 0.83 0.97 Δα 1.00 0.59 0.53 0.80 0.96 0.99 0.65 0.73 0.76 Δf(α)/像素 0.95 0.55 0.58 0.81 0.89 0.90 0.68 0.77 0.75 K/像素 0.92 0.34 0.75 0.74 0.80 0.73 0.68 0.75 0.74 表 6 m与F、Δα、Δf(α)、e、K的灰关联熵
Table 6. Gray relational entropies between m and F, Δα, Δf(α), e and K
指标参数 F e Δα Δf(α)/像素 K/像素 灰关联熵 2.173 0 2.182 0 2.174 8 2.181 8 2.172 7 -
[1] 迟凤霞, 张肖宁, 薛忠军, 等. 基于激光纹理仪的沥青路面表面离析评价方法[J]. 中国公路学报, 2008, 21(5): 1-5. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL200805002.htmCHI Feng-xia, ZHANG Xiao-ning, XUE Zhong-jun, et al. Evaluation method of surface segregation of asphalt pavement based on laser texture measurer[J]. China Journal of Highway and Transport, 2008, 21(5): 1-5. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL200805002.htm [2] YU Miao, YOU Zhan-ping, WU Guo-xiong, et al. Measurement and modeling of skid resistance of asphalt pavement: a review[J]. Construction and Building Materials, 2020, 260: 119878. doi: 10.1016/j.conbuildmat.2020.119878 [3] CHRTSTOPHER WILLIAMS R, DUNCAN G, WHITE T. Sources, measurements, and effects of segregated hot mix asphalt pavement[R]. West Lafayette: Purdue University, 1996. [4] BROWN E R, COLLINS R, BROWNFIELD J R. Investigation of segregation of asphalt mixtures in the state of Georgia[J]. Transportation Research Record, 1989, 1217: 1-8. [5] STROUP-GARDINER M, BROWN E R. Segregation in Hot-Mix Asphalt Pavements[M]. Washington DC: Transportation Research Board, 2000. [6] 黄琪, 赵昕, 雷宇, 等. 沥青混合料级配类型与离析程度关系[J]. 交通运输工程学报, 2009, 9(2): 1-6. doi: 10.19818/j.cnki.1671-1637.2009.02.001HUANG Qi, ZHAO Xin, LEI Yu, et al. Relationship between gradation type and segregation degree for asphalt mixture[J]. Journal of Traffic and Transportation Engineering, 2009, 9(2): 1-6. (in Chinese) doi: 10.19818/j.cnki.1671-1637.2009.02.001 [7] HAO Xue-li, SHA Ai-min, SUN Zhao-yun, et al. Evaluation and comparison of real-time laser and electric sand-patch pavement texture-depth measurement methods[J]. Journal of Transportation Engineering, 2016, 142(7): 04016022. doi: 10.1061/(ASCE)TE.1943-5436.0000842 [8] 王端宜, 李维杰, 张肖宁. 用数字图像技术评价沥青路面的表面离析[J]. 华南理工大学学报(自然科学版), 2005, 33(1): 16-20, 26. https://www.cnki.com.cn/Article/CJFDTOTAL-HNLG200501003.htmWANG Duan-yi, LI Wei-jie, ZHANG Xiao-ning. Evaluation of surface segregation of asphalt pavement by using digital image technique[J]. Journal of South China University of Technology (Natural Science Edition), 2005, 33(1): 16-20, 26. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HNLG200501003.htm [9] KHASAWNEH M A. Estimation of asphalt pavement surfaces using image analysis technique[J]. International Journal of Civil, Environmental, Structural, Construction and Architectural Engineering, 2014, 8(6): 582-587. [10] WANG Hai-nian, BU Yin, WANG Yan-zhe, et al. The effect of morphological characteristic of coarse aggregates measured with fractal dimension on asphalt mixture's high-temperature performance[J]. Advances in Materials Science and Engineering, 2016, 2016: 1-9. [11] MIAO Ying-hao, WU Jia-qi, HOU Yue, et al. Study on asphalt pavement surface texture degradation using 3-D image processing techniques and entropy theory[J]. Entropy (Basel), 2019, 21(2): 208. doi: 10.3390/e21020208 [12] RAN Mao-ping, XIAO Shen-qing, ZHOU Xing-lin, et al. Evaluation of segregation in asphalt pavement surface using concave multifractal distribution[J]. Journal of Testing and Evaluation, 2018, 46(5): 20160616. doi: 10.1520/JTE20160616 [13] ZHANG Ke, ZHANG Zheng-qi, LUO Yao-fei, et al. Accurate detection and evaluation method for aggregate distribution uniformity of asphalt pavement[J]. Construction and Building Materials, 2017, 152: 715-730. doi: 10.1016/j.conbuildmat.2017.07.058 [14] CHEN De, ROOHI SEFIDMAZGI N, BAHIA H. Exploring the feasibility of evaluating asphalt pavement surface macro-texture using image-based texture analysis method[J]. Road Materials and Pavement Design, 2015, 16(2): 405-420. doi: 10.1080/14680629.2015.1016547 [15] CONG Lin, SHI Jia-chen, WANG Tong-jing, et al. A method to evaluate the segregation of compacted asphalt pavement by processing the images of paved asphalt mixture[J]. Construction and Building Materials, 2019, 224: 622-629. [16] LIU Tao, ZHANG Xiao-ning, LI Zhi, et al. Research on the homogeneity of asphalt pavement quality using X-ray computed tomography (CT) and fractal theory[J]. Construction and Building Materials, 2014, 68: 587-598. [17] 王昌衡, 周吴军. 沥青路面均匀性定量评价的分形方法[J]. 公路工程, 2010, 35(1): 117-120. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGL201001026.htmWANG Chang-heng, ZHOU Wu-jun. Evaluation of the homogeneity of asphalt pavement based on fractal method[J]. Highway Engineering, 2010, 35(1): 117-120. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGL201001026.htm [18] 宋永朝, 闫功喜, 隋永芹, 等. 基于数字图像处理技术的沥青路面表面纹理构造分布[J]. 中南大学学报(自然科学版), 2014, 45(11): 4075-4080. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD201411049.htmSONG Yong-chao, YAN Gong-xi, SUI Yong-qin, et al. Texture structure distribution of asphalt pavement surface based on digital image processing technology[J]. Journal of Central South University (Science and Technology), 2014, 45(11): 4075-4080. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD201411049.htm [19] MIAO Ying-hao, SONG Ping-ping, GONG Xiu-qing. Fractal and multifractal characteristics of 3D asphalt pavement macrotexture[J]. Journal of Materials in Civil Engineering, 2014, 26(8): 04014033. [20] 王维锋, 严新平, 肖旺新, 等. 路面纹理的多重分形特征描述与识别方法[J]. 交通运输工程学报, 2013, 13(3): 15-21. doi: 10.19818/j.cnki.1671-1637.2013.03.003WANG Wei-feng, YAN Xin-ping, XIAO Wang-xin, et al. Approach of multifractal feature description and recognition for pavement texture[J]. Journal of Traffic and Transportation Engineering, 2013, 13(3): 15-21. (in Chinese) doi: 10.19818/j.cnki.1671-1637.2013.03.003 [21] ZHANG Zheng-qi, HUANG Shuo-lei, ZHANG Ke. Accurate detection method for compaction uniformity of asphalt pavement[J]. Construction and Building Materials, 2017, 145: 88-97. [22] CHU L, GUO Wei-wei, FWA T F. Theoretical and practical engineering significance of British pendulum test[J]. International Journal of Pavement Engineering, 2022, 23(1): 1-8. [23] 孙朝云, 沙爱民, 姚秋玲, 等. 沥青混合料图像阈值分割算法的实现[J]. 长安大学学报(自然科学版), 2005, 25(6): 34-38.SUN Zhao-yun, SHA Ai-min, YAO Qiu-ling, et al. Realization of threshold segmentation algorithm in asphalt mixture[J]. Journal of Chang'an University (Natural Science Edition), 2005, 25(6): 34-38. (in Chinese) [24] LOPES R, BETROUNI N. Fractal and multifractal analysis: a review[J]. Medical Image Analysis, 2009, 13(4): 634-649. [25] GIMENEZ D, POSADAS A, COOPER M. Multifractal characterization of soil pore shapes[J]. European Geosciences Union General Assembly, 2010, 12: 10649. [26] IMANI F, YAO Bing, CHEN Rui-min, et al. Joint multifractal and lacunarity analysis of image profiles for manufacturing quality control[J]. Journal of Manufacturing Science and Engineering, 2019, 141(4): 044501. [27] ZHANG Xiang, WANG Hai-nian, MOHD HASAN M R, et al. Traffic open time prediction of fog seal with sand using image processing technology[J]. Construction and Building Materials, 2019, 209(2): 9-19. [28] WAN Tong-tong, WANG Hai-nian, FENG Po-nan, et al. Concave distribution characterization of asphalt pavement surface segregation using smartphone and image processing based techniques[J]. Construction and Building Materials, 2021, 301: 124111. [29] GAO Jun-feng, WANG Hai-nian, YOU Zhan-ping, et al. Gray relational entropy analysis of high temperature performance of bio-asphalt binder and its mixture[J]. International Journal of Pavement Research and Technology, 2018, 11: 698-708. [30] 张岐山, 郭喜江, 邓聚龙. 灰关联熵分析方法[J]. 系统工程理论与实践, 1996, 16(8): 7-11. https://www.cnki.com.cn/Article/CJFDTOTAL-XTLL608.001.htmZHANG Qi-shan, GUO Xi-jiang, DENG Ju-long. Grey relation entropy analysis method[J]. Systems Engineering-Theory and Practice, 1996, 16(8): 7-11. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XTLL608.001.htm -