Quantum chemistry-based thermal and UV aging mechanism of asphalt
Article Text (Baidu Translation)
-
摘要: 为从原子层面揭示沥青热老化与紫外老化的底层机制,基于从头算分子动力学和密度泛函理论分析了沥青质在多种温度及紫外辐射条件下的老化反应路径与反应势能参数;基于傅里叶变换红外光谱试验,分析了原样沥青、热老化沥青和紫外老化沥青试样表面化学官能团的变化规律,比较了它们的老化程度。研究结果表明:沥青质老化涉及的亚反应包括由氧气或自由基攫氢所触发的环烷芳构化与含氧基团形成,以及直接的侧链均裂;沥青质老化机理可归纳为沥青质在氧气分子或自由基的侵袭下不断失去氢原子并转化为具有高反应性的不稳定结构,因而经由分子异构化或吸附氧原子等后续反应来降低自身能量,由此引发了沥青质老化行为的持续进展;温度提升不仅加快老化反应速率,还使更多类型的老化反应得以发生;芳构化反应的能垒最低,因此,在较低温度下即可发生,含氧基团的形成次之,而侧链均裂反应的能垒最高,只能在较高温度下才发生;在紫外线辐射下,沥青质分子跃迁至激发态,其反应能垒相比基态显著降低,能大幅加快老化反应;傅里叶变换红外光谱测试结果表明紫外老化沥青试样的老化程度远高于热老化沥青试样,验证了理论计算结果。Abstract: In order to reveal the underlying mechanisms of thermal and ultraviolet (UV) aging of asphalt at the atomic level, the aging reaction paths and corresponding potential energy parameters of asphaltenes under various temperature and UV radiation conditions were analyzed based on ab initio molecular dynamics and density functional theory. The change rules of chemical functional groups on the surfaces of virgin, thermal-aged, and UV-aged asphalt specimens were analyzed based on Fourier transform infrared spectroscopy tests, and their aging degrees were compared. Research results indicate that the involved subreactions of asphaltene aging include the cycloalkane aromatization and the formation of oxygen-containing groups triggered by O2 or radicals induced hydrogen abstraction, as well as direct homolytic cleavage on the side chains. The aging mechanism of asphaltenes can be summarized as follows: asphaltenes lose hydrogen atoms constantly and transform into highly reactive and unstable structures under the attack of O2 molecules or radicals, and thus their energy reduces through subsequent reactions such as molecular isomerization or adsorption of oxygen atoms. As a result, the continuous progress of asphaltene aging behavior is triggered. The increase in temperature not only accelerates the rate of aging reactions, but also triggers more types of aging reactions. The aromatization reaction has the lowest energy barrier and thus can occur at lower temperatures, followed by the formation of oxygen-containing groups, and the homolytic cleavage reaction on the side chains has the highest energy barrier and can only occur at higher temperatures. Under UV radiation, the asphaltene molecule transitions to the excited state, and its reaction energy barrier is significantly lower than that under the ground state. Therefore, it can significantly accelerate the aging reaction. Fourier transform infrared spectroscopy tests show that the aging degree of UV aging asphalt specimens is much higher than that of thermal-aged asphalt specimens, which verifies the theoretical calculation results.
-
-
[1] 张恒龙, 徐国庆, 朱崇政, 等. 长期老化对基质沥青与SBS改性沥青化学组成, 形貌及流变性能的影响[J]. 长安大学学报: 自然科学版, 2019, 39(2): 10-18, 56. doi: 10.3969/j.issn.1673-2049.2019.02.003ZHANG Heng-long, XU Guo-qing, ZHU Chong-zheng, et al. Influence of long-term aging on chemical constitution, morphology and rheology of base and SBS modified asphalt[J]. Journal of Chang'an University: Natural Science Edition, 2019, 39(2): 10-18, 56. (in Chinese) doi: 10.3969/j.issn.1673-2049.2019.02.003 [2] ZHANG Run-hua, SIAS J, DAVE E, et al. Impact of aging on the viscoelastic properties and cracking behavior of asphalt mixtures[J]. Transportation Research Record, 2019, 2673(6): 406-415. doi: 10.1177/0361198119846473 [3] 王佳妮, 薛忠军, 谭忆秋. 紫外老化对沥青力学行为及聚集态的影响[J]. 中国公路学报, 2011, 24(1): 14-19. doi: 10.3969/j.issn.1001-7372.2011.01.003WANG Jia-ni, XUE Zhong-jun, TAN Yi-qiu. Influence of ultraviolet aging on mechanical behavior and aggregated state of asphalt[J]. China Journal of Highway and Transport, 2011, 24(1): 14-19. (in Chinese) doi: 10.3969/j.issn.1001-7372.2011.01.003 [4] PETERSEN J C. A review of the fundamentals of asphalt oxidation: chemical, physicochemical, physical property, and durability relationships[R]. Washington DC: Transportation Research Board, 2009. [5] 何亮, 黄胡端, VAN DEN BERGH W, 等. 沥青自修复微胶囊研究进展[J]. 材料导报, 2020, 34(15): 15092-15101. doi: 10.11896/cldb.19060096HE Liang, HUANG Hu-duan, VAN DEN BERGH W, et al. A state-of-the-art on microcapsules for asphalt self-healing[J]. Materials Reports, 2020, 34(15): 15092-15101. (in Chinese) doi: 10.11896/cldb.19060096 [6] APOSTOLIDIS P, LIU Xue-yan, KASBERGEN C, et al. Synthesis of asphalt binder aging and the state of the art of antiaging technologies[J]. Transportation Research Record, 2017, 2633(1): 147-153. doi: 10.3141/2633-17 [7] HU Dong-liang, GU Xing-yu, DONG Qiao, et al. Investigating the bio-rejuvenator effects on aged asphalt through exploring molecular evolution and chemical transformation of asphalt components during oxidative aging and regeneration[J]. Journal of Cleaner Production, 2021, 329: 129711. doi: 10.1016/j.jclepro.2021.129711 [8] 屈鑫, 丁鹤洋, 汪海年. 道路沥青老化评价方法研究进展[J]. 中国公路学报, 2022, 35(6): 205-220. doi: 10.3969/j.issn.1001-7372.2022.06.018QU Xin, DING He-yang, WANG Hai-nian. The state-of-the-art review on evaluation methods of asphalt binder aging[J]. China Journal of Highway and Transport, 2022, 35(6): 205-220. (in Chinese) doi: 10.3969/j.issn.1001-7372.2022.06.018 [9] 郭鹏, 鲁承慧, 谢凤章, 等. 微观尺度下温拌再生混合料新-旧沥青界面融合特性[J]. 中国公路学报, 2021, 34(10): 89-97. doi: 10.3969/j.issn.1001-7372.2021.10.008GUO Peng, LU Cheng-hui, XIE Feng-zhang, et al. Study on interfacial fusion characteristics of virgin and aged asphalt of warm mix recycled mixture at micro scale[J]. China Journal of Highway and Transport, 2021, 34(10): 89-97. (in Chinese) doi: 10.3969/j.issn.1001-7372.2021.10.008 [10] 谭忆秋, 王佳妮, 冯中良, 等. 沥青结合料紫外老化机理[J]. 中国公路学报, 2008, 21(1): 19-24. doi: 10.3321/j.issn:1001-7372.2008.01.004TAN Yi-qiu, WANG Jia-ni, FENG Zhong-liang, et al. Ultraviolet aging mechanism of asphalt binder[J]. China Journal of Highway and Transport, 2008, 21(1): 19-24. (in Chinese) doi: 10.3321/j.issn:1001-7372.2008.01.004 [11] 庞凌. 沥青紫外光老化特性研究[D]. 武汉: 武汉理工大学, 2008.PANG Ling. Research on the ultraviolet radiation ageing characteristics of asphalt[D]. Wuhan: Wuhan University of Technology, 2008. (in Chinese) [12] HUNG A, FINI E H. Surface morphology and chemical mapping of UV-aged thin films of bitumen[J]. ACS Sustainable Chemistry and Engineering, 2020, 8(31): 11764-11771. doi: 10.1021/acssuschemeng.0c03877 [13] CHEN Zi-hao, ZHANG Heng-long, DUAN Hai-hui. Investigation of ultraviolet radiation aging gradient in asphalt binder[J]. Construction and Building Materials, 2020, 246: 118501. [14] 何亮, 李冠男, 郑雨丰, 等. 沥青体系的分子动力学研究进展及展望[J]. 材料导报, 2020, 34(19): 19083-19093. doi: 10.11896/cldb.19070106HE Liang, LI Guan-nan, ZHENG Yu-feng, et al. Research progress and prospect of molecular dynamics of asphalt systems[J]. Materials Reports, 2020, 34(19): 19083-19093. (in Chinese) doi: 10.11896/cldb.19070106 [15] 崔亚楠, 李雪杉, 张淑艳. 基于分子动力学模拟的再生剂-老化沥青扩散机理[J]. 建筑材料学报, 2021, 24(5): 1105-1109. doi: 10.3969/j.issn.1007-9629.2021.05.028CUI Ya-nan, LI Xue-shan, ZHANG Shu-yan. Diffusion mechanism of regenerant aged asphalt based on molecular dynamics simulation[J]. Journal of Building Materials, 2021, 24(5): 1105-1109. (in Chinese) doi: 10.3969/j.issn.1007-9629.2021.05.028 [16] HU Dong-liang, GU Xing-yu, CUI Bing-yan, et al. Modeling the oxidative aging kinetics and pathways of asphalt: a ReaxFF molecular dynamics study[J]. Energy and Fuels, 2020, 34(3): 3601-3613. doi: 10.1021/acs.energyfuels.9b03740 [17] PAN Tong-yan. A first-principles based chemophysical environment for studying lignins as an asphalt antioxidant[J]. Construction and Building Materials, 2012, 36: 654-664. doi: 10.1016/j.conbuildmat.2012.06.012 [18] HÄSE F, GALVÁN I, ASPURU-GUZIK A, et al. How machine learning can assist the interpretation of ab initio molecular dynamics simulations and conceptual understanding of chemistry[J]. Chemical Science, 2019, 10(8): 2298-2307. doi: 10.1039/C8SC04516J [19] PAHLAVAN F, HUNG A M, ZADSHIR M, et al. Alteration of π-electron distribution to induce deagglomeration in oxidized polar aromatics and asphaltenes in an aged asphalt binder[J]. ACS Sustainable Chemistry and Engineering, 2018, 6(5): 6554-6569. doi: 10.1021/acssuschemeng.8b00364 [20] LI Tian-shuai, GUO Zhi-xiang, LU Guo-yang, et al. Experimental investigations and quantum chemical calculations of methylene diphenyl diisocyanate (MDI)-based chemically modified bitumen and its crosslinking behaviours[J]. Fuel, 2022, 321: 124084. doi: 10.1016/j.fuel.2022.124084 [21] LI D D, GREENFIELD M L. Chemical compositions of improved model asphalt systems for molecular simulations[J]. Fuel, 2014, 115: 347-356. doi: 10.1016/j.fuel.2013.07.012 [22] SCHULER B, MEYER G, PEÑA D, et al. Unraveling the molecular structures of asphaltenes by atomic force microscopy[J]. Journal of the American Chemical Society, 2015, 137(31): 9870-9876. doi: 10.1021/jacs.5b04056 [23] HUTTER J, IANNUZZI M, SCHIFFMANN F, et al. CP2K: atomistic simulations of condensed matter systems[J]. Wiley Interdisciplinary Reviews: Computational Molecular Science, 2014, 4(1): 15-25. doi: 10.1002/wcms.1159 [24] GRIMME S, ANTONY J, EHRLICH S, et al. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu[J]. The Journal of Chemical Physics, 2010, 132(15): 154104. doi: 10.1063/1.3382344 [25] HUMPHREY W, DALKE A, SCHULTEN K. VMD: visual molecular dynamics[J]. Journal of Molecular Graphics, 1996, 14(1): 33-38. doi: 10.1016/0263-7855(96)00018-5 [26] LIU Ze-yu, LU Tian, CHEN Qin-xue. Intermolecular interaction characteristics of the all-carboatomic ring, cyclo[18] carbon: focusing on molecular adsorption and stacking[J]. Carbon, 2020, 171: 514-523. [27] LU Tian, CHEN Fei-wu. Multiwfn: a multifunctional wavefunction analyzer[J]. Journal of Computational Chemistry, 2012, 33(5): 580-592. doi: 10.1002/jcc.22885 [28] LAI Wen-zhen, LI Chun-sen, CHEN Hui, et al. Hydrogen-abstraction reactivity patterns from A to Y: the valence bond way[J]. Angewandte Chemie International Edition, 2012, 51(23): 5556-5578. doi: 10.1002/anie.201108398 [29] TAN Ting, YANG Xue-liang, KRAUTER C M, et al. Ab initio kinetics of hydrogen abstraction from methyl acetate by hydrogen, methyl, oxygen, hydroxyl, and hydroperoxy radicals[J]. The Journal of Physical Chemistry A, 2015, 119(24): 6377-6390. doi: 10.1021/acs.jpca.5b03506 [30] MULLINS O C. The modified Yen model[J]. Energy and Fuels, 2010, 24(4): 2179-2207. [31] YUT I, ZOFKA A. Attenuated total reflection (ATR) Fourier transform infrared (FT-IR) spectroscopy of oxidized polymer-modified bitumens[J]. Applied Spectroscopy, 2011, 65(7): 765-770. -