Yaw stability control strategy of modern trackless train
-
摘要: 为改善现代无轨列车车体横摆稳定性和路径跟踪性能较差的问题,基于拉格朗日方程建立车辆动力学模型,分析了液压杆刚度对车辆转向性能的影响;为解决方程中含有未知约束力,导致其定量关系无法求解的问题,以横摆角速度误差和轨迹跟踪误差为优化目标,采用遗传算法离线优化了刚度参数,并利用函数插值方法在线预测,得到了不同车速、不同前轮转角下的最优液压杆刚度;为提高车辆轨迹跟踪性能,将横摆角速度跟踪误差与轨迹跟踪误差作为评价车辆横摆稳定性的标准,定义了车辆行驶过程中各个轴的侧向误差与航向角误差,基于滑模控制(SMC)算法设计了车辆横摆运动控制器,计算了期望横摆角速度,并进行了稳定性证明和稳态误差分析;由比例积分(PI)控制器计算分配到各个驱动轴的车体横摆力矩,并在U型弯路径上进行了仿真与试验。研究结果表明:车辆稳态转向时,液压杆刚度与车速、前轮转角直接相关,且在任何情况下,连接模块前部液压杆刚度一定大于后部液压杆刚度,车速在22 km·h-1左右时最优液压杆刚度最小;车速大于22 km·h-1时,速度越大,最优液压杆刚度越大,且前部液压杆刚度变化率明显大于后部;车速小于22 km·h-1时,速度越小,最优液压杆刚度越大;直线路段上车轴侧向误差小于0.03 m,航向角误差小于0.03 rad;弯道路段上车轴侧向误差小于0.06 m,航向角误差小于0.06 rad;行驶过程中,车体横摆角速度可以快速跟踪给定值,车辆的行驶稳定性得到了提高,验证了控制策略的有效性。Abstract: To improve the problem of poor yaw stability and path tracking performance of modern trackless trains, a vehicle dynamics model was established based on the Lagrange equation, and the influence of hydraulic rod stiffness on the vehicle steering performance was analyzed. To solve the problem that the unknown constraints in the equation made it difficult to solve its quantitative relationship, the yaw rate error and trajectory tracking error were taken as optimization objectives, and the genetic algorithm was used for offline optimization of stiffness parameters. The function interpolation method was adopted for online prediction to obtain the optimal hydraulic rod stiffnesses under different vehicle speeds and front wheel angles. To improve the vehicle trajectory tracking performance, the yaw rate tracking error and trajectory tracking error were used as the criteria to evaluate the vehicle yaw stability. The lateral error and heading angle error of each axis in the vehicle driving process were defined. A vehicle yaw motion controller was designed based on the sliding mode control (SMC) algorithm, the expected yaw rate was calculated, and the stability proof and steady state error analysis were carried out. The proportional integral (PI) controller was used to calculate the yaw moment of the vehicle body distributed to each drive shaft, and simulation and test were conducted on the U-shaped curve path. Research results show that the hydraulic rod stiffness is directly related to the vehicle speed and the front wheel angle when the vehicle turns in a steady state, and in any case, the front hydraulic rod stiffness of the connection module must be greater than the rear hydraulic rod stiffness. When the vehicle speed is about 22 km·h-1, the optimal hydraulic rod stiffness is the smallest. When the vehicle speed is greater than 22 km·h-1, as the speed increases, the optimal hydraulic rod stiffness rises, and the change rate of the front hydraulic rod stiffness is significantly greater than that of the rear hydraulic rod stiffness. When the speed is less than 22 km·h-1, as the speed gets smaller, the optimal hydraulic rod stiffness becomes greater. The lateral error of the axle on the straight section is less than 0.03 m, and the heading angle error is less than 0.03 rad. The lateral error of the axle on the curve section is less than 0.06 m, and the heading angle error is less than 0.06 rad. In the driving process, the yaw rate of the vehicle body can quickly track the given value, and the driving stability of the vehicle improves, which verifies the effectiveness of the control strategy.
-
Key words:
- vehicle dynamics /
- modern trackless train /
- driving stability /
- genetic algorithm /
- sliding mode control
-
表 1 车辆仿真系统参数
Table 1. Parameters of vehicle simulation system
参数 驾驶模块 连接模块 拖车模块 mi/kg 12 800 4 100 8 400 ai/m 2.70 1.05 2.50 li/m 5.15 1.05 2.50 表 2 模型车参数
Table 2. Parametersof model vehicle
参数 驾驶模块 连接模块 拖车模块 mi/kg 1.339 0.805 1.202 ai/m 4.00×10-3 4.25×10-3 8.50×10-3 li/m 1.125×10-2 4.250×10-3 8.500×10-3 -
[1] 席利贺, 张欣, 耿聪, 等. 基于动态规划算法的增程式电动汽车能量管理策略优化[J]. 交通运输工程学报, 2018, 18(3): 148-156. doi: 10.3969/j.issn.1671-1637.2018.03.016XI Li-he, ZHANG Xin, GENG Cong, et al. Energy management strategy optimization of extended-range electric vehicle based on dynamic programming[J]. Journal of Traffic and Transportation Engineering, 2018, 18(3): 148-156. (in Chinese) doi: 10.3969/j.issn.1671-1637.2018.03.016 [2] 孙帮成, 刘志明, 崔涛, 等. 汽车列车多轴转向控制方法及仿真研究[J]. 机械工程学报, 2019, 55(4): 154-163. https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201904021.htmSUN Bang-cheng, LIU Zhi-ming, CUI Tao, et al. Research on multi-axis steering control method and simulation of train-like vehicle[J]. Journal of Mechanical Engineering, 2019, 55(4): 154-163. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201904021.htm [3] HE Yu-ping, ISLAM M M, WEBSTER T D. An integrated design method for articulated heavy vehicles with active trailer steering systems[J]. SAE International Journal of Passenger Cars-Mechanical Systems, 2010, 3(6): 158-174. [4] ODHAMS A M C, ROEBUCK R L, CEBON D, et al. Dynamic safety of active trailer steering systems[J]. Proceedings of the Institution of Mechanical Engineers, Part K: Journal of Multi-Body Dynamics, 2008, 222(4): 367-380. doi: 10.1243/14644193JMBD174 [5] 朱明. 分布式驱动电动汽车横摆稳定性控制方法研究[D]. 西安: 长安大学, 2019.ZHU Ming. Research on yaw stability control method of distributed drive electric vehicle[D]. Xi'an: Chang'an University, 2019. (in Chinese) [6] 张云灵. 基于模型预测的分布式驱动电动汽车稳定性控制[D]. 长沙: 湖南大学, 2018.ZHANG Yun-ling. Multi-objective harmony search algorithm and its application in traffic image segmentation[D]. Changsha: Hunan University, 2018. (in Chinese) [7] TIAN Jie, ZENG Qing-kang, WANG Peng, et al. Active steering control based on preview theory for articulated heavy vehicles[J]. PloS One, 2021, 16(5): e0252098. doi: 10.1371/journal.pone.0252098 [8] GAO Yu, SHEN Yan-hua, XU Tao, et al. Oscillatory yaw motion control for hydraulic power steering articulated vehicles considering the influence of varying bulk modulus[J]. IEEE Transactions on Control Systems Technology, 2019, 27(3): 1284-1292. doi: 10.1109/TCST.2018.2803746 [9] WANG Bo, ZHA Hong-shan, ZHONG Guo-qi, et al. Integrated active steering control strategy for autonomous articulated vehicles[J]. International Journal of Heavy Vehicle Systems, 2020, 27(5): 565-599. doi: 10.1504/IJHVS.2020.111262 [10] GUAN H, KIM K, WANG Bo. Comprehensive path and attitude control of articulated vehicles for varying vehicle conditions[J]. International Journal of Heavy Vehicle Systems, 2017, 24(1): 65-95. doi: 10.1504/IJHVS.2017.080961 [11] 于志新, 宗长富, 何磊, 等. 基于LQR的重型半挂汽车列车稳定性控制策略[J]. 中国公路学报, 2011, 24(2): 114-119. doi: 10.3969/j.issn.1001-7372.2011.02.019YU Zhi-xin, ZONG Chang-fu, HE Lei, et al. Stability control strategy of heavy semitrailer based on LQR[J]. China Journal of Highway and Transport, 2011, 24(2): 114-119. (in Chinese) doi: 10.3969/j.issn.1001-7372.2011.02.019 [12] 赵翾, 杨珏, 张文明, 等. 农用轮式铰接车辆滑模轨迹跟踪控制算法[J]. 农业工程学报, 2015, 31(10): 198-203. doi: 10.11975/j.issn.1002-6819.2015.10.026ZHAO Xuan, YANG Jue, ZHANG Wen-ming, et al. Sliding mode control algorithm for path tracking of articulated dump truck[J]. Transactions of the Chinese Society of Agricultural Engineering, 2015, 31(10): 198-203. (in Chinese) doi: 10.11975/j.issn.1002-6819.2015.10.026 [13] LIU Zhi-yuan, YUE Ming, GUO Lie, et al. Trajectory planning and robust tracking control for a class of active articulated tractor-trailer vehicle with on-axle structure[J]. European Journal of Control, 2020, 54: 87-98. doi: 10.1016/j.ejcon.2019.12.003 [14] PAZOOKI A, RAKHEJA S, CAO Dong-pu. Kineto-dynamic directional response analysis of an articulated frame steer vehicle[J]. International Journal of Vehicle Design, 2014, 65(1): 1-30. doi: 10.1504/IJVD.2014.060063 [15] SADEGHI KATI M, FREDRIKSSON J, JACOBSON B, et al. Gain-scheduled H∞ controller synthesis for actively steered longer and heavier commercial vehicles[J]. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 2020, 234(7): 2045-2065. doi: 10.1177/0954407019870352 [16] SADEGHI KATI M, KÖROĞLU H, FREDRIKSSON J. Robust lateral control of long-combination vehicles under moments of inertia and tyre cornering stiffness uncertainties[J]. Vehicle System Dynamics, 2019, 57(12): 1847-1873. doi: 10.1080/00423114.2018.1552363 [17] ALSHAER B J, DARABSEH T T, MOMANI A Q. Modelling and control of an autonomous articulated mining vehicle navigating a predefined path[J]. International Journal of Heavy Vehicle Systems, 2014, 21(2): 152. doi: 10.1504/IJHVS.2014.061640 [18] OREH S H T, KAZEMI R, AZADI S. A new desired articulation angle for directional control of articulated vehicles[J]. Proceedings of the Institution of Mechanical Engineers, Part K: Journal of Multi-Body Dynamics, 2012, 226(4): 298-314. doi: 10.1177/1464419312445426 [19] ESMAEILI N, KAZEMI R, TABATABAEI OREH S H. An adaptive sliding mode controller for the lateral control of articulated long vehicles[J]. Proceedings of the Institution of Mechanical Engineers, Part K: Journal of Multi-Body Dynamics, 2019, 233(3): 487-515. doi: 10.1177/1464419318806801 [20] LI Zheng-chao, JING Xing-jian, SUN Bo, et al. Autonomous navigation of a tracked mobile robot with novel passive bio- inspired suspension[J]. IEEE/ASME Transactions on Mechatronics, 2020, 25(6): 2633-2644. doi: 10.1109/TMECH.2020.2987004 [21] WAGNER S, NITZSCHE G, HUBER R. Advanced automatic steering systems for multiple articulated road vehicles[C]// ASME. Proceedings of ASME International Mechanical Engineering Congress and Exposition. San Diego: ASME, 2013: 62630. [22] BARBOSA F M, MARCOS L B, DA SILVA M M, et al. Robust path-following control for articulated heavy-duty vehicles[J]. Control Engineering Practice, 2019, 85: 246-256. doi: 10.1016/j.conengprac.2019.01.017 [23] LASHGARIAN AZAD N. Dynamic modelling and stability controller development for articulated steer vehicles[D]. Waterloo: University of Waterloo, 2007. [24] DUDZIŃSKI P, SKURJAT A. Directional dynamics problems of an articulated frame steer wheeled vehicles[J]. Journal of KONES Powertrain and Transport, 2012, 19(1): 89-98. [25] FENG Jiang-hua, HU Yun-qing, YUAN Xi-wen, et al. Development and validation of an automatic all-wheel steering system for multiple-articulated rubber-tire transit[J]. IET Electrical Systems in Transportation, 2021, 11(3): 227-240. doi: 10.1049/els2.12023 [26] WANG Wen-wei, ZHANG Wei, ZHANG Han-yu, et al. Yaw stability control through independent driving torque control of mid and rear wheels of an articulated bus[J]. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 2020, 234(13): 2947-2960. doi: 10.1177/0954407020919539 [27] ALAGAPPAN A V, RAO K V N, KUMAR R K. A comparison of various algorithms to extract magic formula tyre model coefficients for vehicle dynamics simulations[J]. Vehicle System Dynamics, 2015, 53(2): 154-178. doi: 10.1080/00423114.2014.984727 [28] 魏畅. 多轴轮边驱动电动铰接客车的横摆稳定性研究[D]. 北京: 北京理工大学, 2017.WEI Chang. Research on yaw stability of multi-axle direct wheel drive articulated bus[D]. Beijing: Beijing Institute of Technology, 2007. (in Chinese) [29] 李鹏, 马建军, 郑志强. 采用幂次趋近律的滑模控制稳态误差界[J]. 控制理论与应用, 2011, 28(5): 619-624.LI Peng, MA Jian-jun, ZHENG Zhi-qiang. Sliding mode control approach based on nonlinear integrator[J]. Control Theory and Applications, 2011, 28(5): 619-624. (in Chinese) [30] ALIPOUR K, ROBAT A B, TARVIRDIZADEH B. Dynamics modeling and sliding mode control of tractor-trailer wheeled mobile robots subject to wheels slip[J]. Mechanism and Machine Theory, 2019, 138: 16-37. doi: 10.1016/j.mechmachtheory.2019.03.038 [31] 赵熙俊, 刘海鸥, 熊光明, 等. 自动转向滑模变结构控制参数选取方法[J]. 北京理工大学学报, 2011, 31(10): 1174-1178. https://www.cnki.com.cn/Article/CJFDTOTAL-BJLG201110008.htmZHAO Xi-jun, LIU Hai-ou, XIONG Guang-ming, et al. Automatic steering sliding mode variable structure control parameter selection method[J]. Transactions of Beijing Institute of Technology, 2011, 31(10): 1174-1178. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-BJLG201110008.htm [32] 梁宝钰, 汪怡平, 刘珣, 等. 基于滑模理论的高速车辆侧风稳定性控制研究[J]. 汽车工程, 2022, 44(1): 123-130. https://www.cnki.com.cn/Article/CJFDTOTAL-QCGC202201017.htmLIANG Bao-yu, WANG Yi-ping, LIU Xun, et al. Study on crosswind stability control of high-speed vehicle based on sliding mode theory[J]. Automotive Engineering, 2022, 44(1): 123-130. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-QCGC202201017.htm -