-
摘要: 为了实现对受灾城市的快速支援,同时尽可能降低应急救援网络的建设成本,以应急救援站选址和应急救援通道布局为落脚点,研究了三级轴辐式应急救援网络的多目标规划方法;考虑轴辐式网络的多级结构及应急救援站间的连通关系特征,以三级应急救援站选址、应急救援站间的连通关系及应急救援通道等级为决策变量,以各级应急救援站的建设成本和网络平均救援时间最小为双目标函数,构建三级轴辐式应急救援网络规划模型;结合决策变量的特征为三级轴辐式应急救援网络规划模型设计了三段式编码结构的小生境Pareto遗传算法;依托甘肃省14个城市的公路网络进行应急救援网络的建模求解,验证方法的有效性,并将优化结果与传统三级应急救援网络进行了对比。研究结果表明:三段式编码结构的小生境Pareto遗传算法能够有效求解该轴辐式应急救援网络规划模型;与传统应急救援网络模型的最优解相比,选取的Pareto解方案可使三级轴辐式应急救援网络在应急救援站的建设成本上降低8.3%,在网络平均救援时间上加快了3.5 h,其优化结果可支配传统应急救援网络的最优解。可见,提出的三级轴辐式应急救援网络规划方法能够兼顾轴辐式网络的集约特性,同时取得更短的应急救援时间。Abstract: In order to achieve the rapid rescue of disaster-stricken cities and simultaneously reduce the construction cost of emergency rescue networks as much as possible, the multi-objective planning method of the three-level hub-and-spoke emergency rescue network was studied by taking the locations of emergency rescue stations and the layout of emergency rescue channels as the foothold. The multi-level structure of the hub-and-spoke network and the characteristics of connection relationship between emergency rescue stations were considered, the locations of three-level emergency rescue stations, the connection relationship between emergency rescue stations, and the level of emergency rescue channels were taken as decision variables, the minimum construction cost of emergency rescue stations at all levels and the minimum average network rescue time were taken as the two objective functions, a three-level hub-and-spoke emergency rescue network planning model was bulit. The niche Pareto genetic algorithm with a three-segment encoding structure for the three-level hub-and-spoke emergency rescue network planning model was designed by combining the characteristics of the decision variables. The emergency rescue network was modelled and solved based on the road network of 14 cities in Gansu Province. The effectiveness of the method was verified, and the optimization results were compared with the traditional three-level emergency rescue network. Research results show that the niche Pareto genetic algorithm with a three-segment encoding structure can effectively solve the hub-and-spoke emergency rescue network planning model. Compared with the optimal solution of the traditional emergency rescue network model, the selected scheme of the Pareto solution in the three-level hub-and-spoke emergency rescue network can reduce the construction cost of emergency rescue stations by 8.3%, and accelerate the average network rescue time by 3.5 h. The optimization results can dominate the optimal solution of the traditional emergency rescue network. So, the proposed three-level hub-and-spoke emergency rescue network planning method can take into account the intensive characteristics of hub-and-spoke networks and achieve shorter emergency rescue time.
-
表 1 城市间距离
Table 1. Distances between cities
km 节点城市 兰州 嘉峪关 金昌 白银 天水 武威 张掖 平凉 酒泉 庆阳 定西 陇南 临夏州 甘南州 兰州 0.0 735.7 369.5 80.4 307.0 274.4 507.5 317.5 711.6 478.5 106.4 548.8 140.1 230.1 嘉峪关 0.0 442.6 761.2 1 028.2 464.2 225.9 1 039.0 21.6 1 200.2 827.5 1 369.9 856.3 947.2 金昌 0.0 400.9 667.9 97.5 219.1 678.3 423.1 848.1 467.2 903.6 496.0 586.8 白银 0.0 378.3 304.9 538.4 388.5 742.1 574.4 177.8 613.8 213.6 304.4 天水 0.0 572.1 805.3 241.3 1 009.3 400.1 204.3 249.3 342.0 432.8 武威 0.0 240.5 591.1 444.6 754.2 371.4 807.8 400.2 491.1 张掖 0.0 815.5 207.2 985.0 604.4 1 046.7 633.2 724.0 平凉 0.0 1019.5 163.3 228.9 468.5 441.7 532.5 酒泉 0.0 1 189.4 808.7 1 251.1 837.6 928.4 庆阳 0.0 389.9 615.2 602.5 693.3 定西 0.0 445.2 230.8 321.6 陇南 0.0 566.0 354.0 临夏州 0.0 103.8 甘南州 0.0 表 2 三组Pareto解的目标函数值
Table 2. Objective function values of 3 sets of Pareto solutions
目标值 Pareto解1 Pareto解2 Pareto解3 网络平均救援时间/h 131.7 137.7 180.2 应急救援站建设成本/亿元 17.5 16.5 15.5 表 3 两种应急救援网络的最优方案对比
Table 3. Comparison of optimal schemes of two emergency rescue networks
目标值 三级轴辐式应急救援网络最优方案 传统三级应急救援网络最优方案 网络平均救援时间/h 137.7 141.2 应急救援站建设成本/亿元 16.5 18.0 -
[1] 陶莎, 胡志华. 需求与物流网络不确定下的应急救援选址问题[J]. 计算机应用, 2012, 32(9): 2534-2537. https://www.cnki.com.cn/Article/CJFDTOTAL-JSJY201209042.htmTAO Sha, HU Zhi-hua. Facility location in emergency relief with uncertain demand and logistics network[J]. Journal of Computer Applications, 2012, 32(9): 2534-2537. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JSJY201209042.htm [2] KLIBI W, ICHOUA S, MARTEL A. Prepositioning emergency supplies to support disaster relief: a case study using stochastic programming[J]. INFOR: Information Systems and Operational Research, 2018, 56(1): 50-81. doi: 10.1080/03155986.2017.1335045 [3] JIANG Shuo, WENG Xun. Multimodal hub-spoke emergency logistics network design[C]//IEEE. 2015 12th International Conference on Service Systems and Service Management. New York: IEEE, 2015: 1-4. [4] 冯春, 于彧洋. 不确定情景下应急物资储备库选址问题研究[J]. 工业工程, 2014, 17(2): 7-11. doi: 10.3969/j.issn.1007-7375.2014.02.002FENG Chun, YU Yu-yang. Research on emergency supply stockpile location under uncertainty scenarios[J]. Industrial Engineering Journal, 2014, 17(2): 7-11. (in Chinese) doi: 10.3969/j.issn.1007-7375.2014.02.002 [5] 陈九珍. 轴辐式应急物流网络构建研究[D]. 武汉: 华中科技大学, 2010.CHEN Jiu-zhen. A study on the construction of hub-and-spoke emergency logistics network[D]. Wuhan: Huazhong University of Science and Technology, 2010. (in Chinese) [6] 祝蕾. 基于复杂网络理论的城市轨道交通应急救援站选址研究[D]. 南京: 东南大学, 2018.ZHU Lei. Research on location of urban rail transit emergency rescue stations based on complex network theory[D]. Nanjing: Southeast University, 2018. (in Chinese) [7] 齐元涛. 灾害链情形下救援物资储备网络设计研究[D]. 济南: 山东大学, 2017.QI Yuan-tao. Research on network design of relief material reserve under disaster chain[D]. Jinan: Shandong University, 2017. (in Chinese) [8] IROHARA T, KUOYONG-HONG, LEUNG J M Y. From preparedness to recovery: a tri-level programming model for disaster relief planning[C]//PACINO D, VOß S, JENSEN R M. International Conference on Computational Logistics. Berlin: Springer, 2013: 213-228. [9] 吴艳华, 王富章, 李芳. 铁路救援基地层级规划选址模型[J]. 交通运输工程学报, 2013, 13(3): 86-93. doi: 10.3969/j.issn.1671-1637.2013.03.012WU Yan-hua, WANG Fu-zhang, LI Fang. Hierarchical planning location model of railway rescue center[J]. Journal of Traffic and Transportation Engineering, 2013, 13(3): 86-93. (in Chinese) doi: 10.3969/j.issn.1671-1637.2013.03.012 [10] 朱燕, 邵荃, 贾萌, 等. 通用航空应急救援点布局方法研究[J]. 河南科学, 2015, 33(2): 265-270. https://www.cnki.com.cn/Article/CJFDTOTAL-HNKX201502027.htmZHU Yan, SHAO Quan, JIA Meng, et al. Research on the layout of general aviation rescue point[J]. Henan Science, 2015, 33(2): 265-270. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HNKX201502027.htm [11] 龙京, 黄钢, 王孟钧, 等. 铁路应急物资储备点选址[J]. 交通运输工程学报, 2011, 11(1): 74-78. doi: 10.3969/j.issn.1671-1637.2011.01.013LONG Jing, HUANG Gang, WANG Meng-jun, et al. Reserve depot location of railway emergency material[J]. Journal of Traffic and Transportation Engineering, 2011, 11(1): 74-78. (in Chinese) doi: 10.3969/j.issn.1671-1637.2011.01.013 [12] PRADHANANGA R, MUTLU F, POKHAREL S, et al. An integrated resource allocation and distribution model for pre-disaster planning[J]. Computers and Industrial Engineering, 2016, 100(91): 229-238. [13] 王海军, 黎卜豪, 刘康康. 应急救援下需求分配与网络配流研究[J]. 系统工程理论与实践, 2015, 35(6): 1457-1464. https://www.cnki.com.cn/Article/CJFDTOTAL-XTLL201506010.htmWANG Hai-jun, LI Bu-hao, LIU Kang-kang. Demand allocation and network flow assignment under emergency rescue circumstance[J]. Systems Engineering—Theory and Practice, 2015, 35(6): 1457-1464. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XTLL201506010.htm [14] 张毅, 郭晓汾, 李金辉. 灾后道路抢修和物资配送的整合优化算法[J]. 交通运输工程学报, 2007, 7(2): 117-122. doi: 10.3321/j.issn:1671-1637.2007.02.025ZHANG Yi, GUO Xiao-fen, LI Jin-hui. Combinatorial optimization algorithm of rapid road repair and material distribution after disaster[J]. Journal of Traffic and Transportation Engineering, 2007, 7(2): 117-122. (in Chinese) doi: 10.3321/j.issn:1671-1637.2007.02.025 [15] 周霞. 突发事件下跨区域综合交通运输网应急调度研究[D]. 成都: 西南交通大学, 2020.ZHOU Xia. Research on emergency dispatching of trans-regional integrated transportation network under emergency[D]. Chengdu: Southwest Jiaotong University, 2020. (in Chinese) [16] 熊杰, 冯春, 张怡. 基于复杂网络的灾难救援物流网络鲁棒性分析[J]. 系统仿真学报, 2013, 25(7): 1639-1645. https://www.cnki.com.cn/Article/CJFDTOTAL-XTFZ201307035.htmXIONG Jie, FENG Chun, ZHANG Yi. Robustness analysis of disaster relief logistics network based on complex networks[J]. Journal of System Simulation, 2013, 25(7): 1639-1645. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XTFZ201307035.htm [17] O'KELLY M E. A quadratic integer program for the location of interacting hub facilities[J]. European Journal of Operational Research, 1987, 32(3): 393-404. doi: 10.1016/S0377-2217(87)80007-3 [18] SKORIN-KAPOV D, SKORIN-KAPOV J, ÓKELLY M. Tight linear programming relaxations of uncapacitated p-hub median problems[J]. European Journal of Operational Research, 1996, 94(3): 582-593. doi: 10.1016/0377-2217(95)00100-X [19] KLINCEWICZ J G. A dual algorithm for the uncapacitated hub location problem[J]. Location Science, 1996, 4(3): 173-184. doi: 10.1016/S0966-8349(96)00010-1 [20] STANIMIROVIĆ Z. A genetic algorithm approach for the capacitated single allocation p-hub median problem[J]. Computing and Informatics, 2010, 29(1): 117-132. [21] ERNST A T, KRISHNAMOORTHY M. Efficient algorithms for the uncapacitated single allocation p-hub median problem[J]. Location Science, 1996, 4(3): 139-154. doi: 10.1016/S0966-8349(96)00011-3 [22] QIN Zhong-feng, GAO Yuan. Uncapacitated p-hub location problem with fixed costs and uncertain flows[J]. Journal of Intelligent Manufacturing, 2017, 28(3): 705-716. [23] DUKKANCI O, KARA B Y. Routing and scheduling decisions in the hierarchical hub location problem[J]. Computers and Operations Research, 2017, 85: 45-57. [24] YAMANH. The hierarchical hub median problem with single assignment[J]. Transportation Research Part B: Methodological, 2009, 43(6): 643-658. [25] ARBABI H, NASIRI MM, BOZORGI-AMIRI A. A hub-and-spoke architecture for a parcel delivery system using the cross-docking distribution strategy[J]. Engineering Optimization, 2021, 53(9): 1593-1612. [26] EBERY J, KRISHNAMOORTHY M, ERNST A, et al. The capacitated multiple allocation hub location problem: formulations and algorithms[J]. European Journal of Operational Research, 2000, 120(3): 614-631. [27] ROSTAMI B, KÄMMERLING N, BUCHHEIM C, et al. Reliable single allocation hub location problem under hub breakdowns[J]. Computers and Operations Research, 2018, 96: 15-29. [28] 胡晶晶, 黄有方. 应对枢纽失效的轴辐式网络枢纽备份[J]. 计算机应用, 2018, 38(6): 1814-1819. https://www.cnki.com.cn/Article/CJFDTOTAL-JSJY201806049.htmHU Jing-jing, HUANG You-fang. Hub backup to deal with hub failure in hub and spoke network[J]. Journal of Computer Applications, 2018, 38(6): 1814-1819. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JSJY201806049.htm [29] 倪玲霖. 轴辐式与点对点及组合式的快递网络特征分析[J]. 统计与决策, 2010(20): 59-61. https://www.cnki.com.cn/Article/CJFDTOTAL-TJJC201020019.htmNI Ling-lin. Hub-and-spoke versus point-to-point and combined express network characteristics analysis[J]. Statistics and Decision, 2010(20): 59-61. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TJJC201020019.htm [30] WANG Min, CHENG Qing, HUANG Jin-cai, et al. Research on optimal hub location of agricultural product transportation network based on hierarchical hub-and-spoke network model[J]. Physica A: Statistical Mechanics and Its Applications, 2021, 566: 125412. -