Discrete element virtual triaxial test of ballast penetration into subgrade soil sample
-
摘要: 采用离散元法(DEM)从宏细观角度研究了有砟轨道道砟嵌入对路基土变形特性的影响;基于三维结构光扫描系统对道砟颗粒外形进行重构,实现道砟颗粒的精细化建模;基于DEM软件PFC3D V6.0建立高度为600 mm、直径为300 mm的道砟嵌入试样与纯土试样三轴计算模型;通过有限差分法(FDM)与DEM耦合,实现三轴围压柔性加载,分别对2种试样进行三轴试验模拟;对比分析了道砟嵌入试样与纯土试样的模拟结果,明确道砟嵌入对路基土变形特性的影响。研究结果表明:围压为30 kPa时,道砟嵌入试样峰值强度为257 kPa,纯土试样峰值强度为199 kPa,相比于纯土试样,道砟嵌入会使土体承受荷载的能力降低;剪切结束时纯土试样体应变为-3.24%,道砟嵌入试样为-14.59%,道砟嵌入试样剪胀效应更为明显;纯土试样与道砟嵌入试样侧向变形机理不同,纯土试样中部产生鼓胀变形是因为其中部区域不受约束,颗粒可自由运动,道砟嵌入试样土样表层发生侧向鼓胀是因为道砟-土界面处发生的道砟嵌入对表层土颗粒向两侧挤压的排挤作用;2种试样土颗粒配位数变化趋势一致,均表现出随轴向应变先增加、后减小、最后趋于平缓的趋势,但纯土试样土颗粒配位数明显高于道砟嵌入试样;纯土试样力链沿轴向发展且分布均匀,道砟嵌入试样会在道砟-土接触界面出现明显接触力集中。Abstract: The discrete element method (DEM) was used to study the effect of ballast penetration in ballasted tracks on the deformation characteristics of subgrade soil from both macroscopic and mesoscopic perspectives. The shape of ballast particles was reconstructed based on a three-dimensional structured light scanning system, and the refined modeling of ballast particles was realized. Triaxial computational models of a ballast penetration sample and a pure soil sample with a height of 600 mm and a diameter of 300 mm were established based on DEM software PFC 3D V6.0. The finite difference method (FDM) was coupled with DEM to realize the flexible loading of triaxial confining pressure. The simulations of triaxial tests were conducted separately for both samples. The simulation results of the ballast penetration sample and pure soil sample were compared and analyzed to clarify the influence of ballast penetration on the deformation characteristics of subgrade soil. Research results show that at a confining pressure of 30 kPa, the peak strength of the ballast penetration sample is 257 kPa, whereas that of the pure soil sample is 199 kPa. Compared with the pure soil sample, ballast penetration reduces the load bearing capacity of subgrade soil. At shear termination, the volumetric strain of the pure soil sample is -3.24%, while that of the ballast penetration sample is -14.59%, indicating a more pronounced shear dilation effect in the ballast penetration sample. The lateral deformation mechanism of the pure soil sample is different from that of the ballast penetration sample. Bulging deformation in the middle of the pure soil sample occurs because the central region is unconstrained, allowing particles to move freely. The lateral bulging of the surface soil in the ballast penetration sample occurs because ballast penetration at the ballast-soil interface exerts a squeezing action on surface soil particles on both sides. The trend of soil particle coordination number variation is consistent for both types of samples, showing an initial increase followed by a decrease with axial strain and ultimately reaching a plateau. However, the soil particle coordination number of the pure soil sample is significantly higher than that of the ballast penetration sample. The force chains in the pure soil sample develop along the axial direction and are evenly distributed, whereas noticeable contact force concentration occurs at the ballast-soil interface in the ballast penetration sample.
-
Key words:
- railway engineering /
- ballast track /
- DEM simulation /
- virtual triaxial test /
- ballast penetration /
- flexible loading
-
图 7 路基土粒径级配[9]
Figure 7. Grain size gradations of subgrade soil
表 1 接触模型参数
Table 1. Parameters of contact model
接触类型 参数 取值 道砟
(赫兹接触模型)G1/GPa 2.0 υ1 0.18 μ1 0.9 土颗粒
(Hill接触模型)G2/MPa 11.5 υ2 0.25 μ2 0.5 ψ/kPa 70 土颗粒与道砟
(赫兹接触模型)G12/MPa 22.7 υ12 0.25 μ12 0.5 橡胶膜 Y/MPa 1.1 T/mm 2.5 ρ/(kg·m-3) 930 全局参数 局部阻尼 0.7 -
[1] 韩博文, 蔡国庆, 李舰, 等. 有砟轨道路基翻浆冒泥模型试验系统的研发与应用[J]. 岩土工程学报, 2022, 44(8): 1406-1415. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202208005.htmHAN Bo-wen, CAI Guo-qing, LI Jian, et al. Development and application of model test system for mud pumping in ballasted track subgrade[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(8): 1406-1415. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202208005.htm [2] 聂如松, 李亚峰, 冷伍明, 等. 考虑道砟嵌入作用的有砟轨道基床表层变形行为研究[J]. 铁道学报, 2023, 45(11): 128-137. https://www.cnki.com.cn/Article/CJFDTOTAL-TDXB202311015.htmNIE Ru-song, LI Ya-feng, LENG Wu-ming, et al. Study on deformation behaviors of subgrade bed surface layer in ballast tracks considering ballast penetration[J]. Journal of the China Railway Society, 2023, 45(11): 128-137. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TDXB202311015.htm [3] 李亚峰, 聂如松, 冷伍明, 等. 列车动荷载作用下有砟轨道道砟嵌入现象研究[J]. 中南大学学报(自然科学版), 2023, 54(1): 197-208. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD202301018.htmLI Ya-feng, NIE Ru-song, LENG Wu-ming, et al. Study on phenomenon of ballast penetration in ballast track under train dynamic loads[J]. Journal of Central South University (Science and Technology), 2023, 54(1): 197-208. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD202301018.htm [4] DING Yu, JIA Yu, ZONG Zhong-ling, et al. Study on characteristics and mechanism of subgrade mud pumping under heavy-haul train loads[J]. Bulletin of Engineering Geology and the Environment, 2024, 83(2): 63. doi: 10.1007/s10064-024-03555-7 [5] XIAO Jun-hua, WANG Yan-hai, ZHANG De, et al. Testing of contact stress at ballast bed-soil subgrade interface under cyclic loading using the thin-film pressure sensor[J]. Journal of Testing and Evaluation, 2020, 48(3): 20190171. [6] DUONG T V, CUI Y J, TANG A M, et al. Investigating the mud pumping and interlayer creation phenomena in railway sub-structure [J]. Engineering Geology, 2014, 171: 45-58. doi: 10.1016/j.enggeo.2013.12.016 [7] BIAN Xue-cheng, JIANG Jian-qun, JIN Wan-feng, et al. Cyclic and postcyclic triaxial testing of ballast and subballast[J]. Journal of Materials in Civil Engineering, 2016, 28(7): 04016032. doi: 10.1061/(ASCE)MT.1943-5533.0001523 [8] VLADIMIR R. 循环列车荷载下道砟碎石-粗粒土永久变形研究[D]. 哈尔滨: 哈尔滨工业大学, 2016.VLADIMIR R. Experimental investigation on permanent deformation of ballast-coarse grained soil induced by cyclic train load[D]. Harbin: Harbin Institute of Technology, 2016. (in Chinese) [9] 张杰, 聂如松, 李列列, 等. 基于柔性边界的非饱和土三轴试验及离散元分析[J]. 应用基础与工程科学学报, 2024, 32(1): 208-222. https://www.cnki.com.cn/Article/CJFDTOTAL-YJGX202401014.htmZHANG Jie, NIE Ru-song, LI Lie-lie, et al. Discrete element analysis of triaxial test of unsaturated soil based on flexible boundary conditions[J]. Journal of Basic Science and Engineering, 2024, 32(1): 208-222. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YJGX202401014.htm [10] CUNDALL P A, STRACK O D L. A discrete numerical model for granular assemblies[J]. Geotechnique, 1979, 29(1): 47-65. doi: 10.1680/geot.1979.29.1.47 [11] 何亮, 周子栋, VAN DEN BERGH W, 等. 多孔沥青混合料堵塞规律离散元仿真[J]. 交通运输工程学报, 2023, 23(2): 78-91. doi: 10.19818/j.cnki.1671-1637.2023.02.005HE Liang, ZHOU Zi-dong, VAN DEN BERGH W, et al. Discrete element simulation of porous asphalt mixture clogging law[J]. Journal of Traffic and Transportation Engineering, 2023, 23(2): 78-91. (in Chinese) doi: 10.19818/j.cnki.1671-1637.2023.02.005 [12] INDRARATNA B, THAKUR P K, VINOD J S. Experimental and numerical study of railway ballast behavior under cyclic loading [J]. International Journal of Geomechanics, 2010, 10(4): 136-144. doi: 10.1061/(ASCE)GM.1943-5622.0000055 [13] ZHANG Jun-qi, WANG Xiang, YIN Zhen-yu, et al. DEM modeling of large-scale triaxial test of rock clasts considering realistic particle shapes and flexible membrane boundary [J]. Engineering Geology, 2020, 279: 105871. doi: 10.1016/j.enggeo.2020.105871 [14] KIM H, PARK S W. DEM simulation for shear behavior in unsaturated granular materials at low-stress state[J]. Computers and Geotechnics, 2020, 122: 103551. doi: 10.1016/j.compgeo.2020.103551 [15] ZHANG Jie, NIE Ru-song, TAN Yong-chang, et al. Modeling of flexible coupling boundary combing discrete element method with finite difference method for drained/undrained triaxial test[J]. Powder Technology, 2023, 427: 118680. doi: 10.1016/j.powtec.2023.118680 [16] 肖军华, 张德, 王延海, 等. 基于DEM-FDM耦合的普通铁路碎石道床-土质基床界面接触应力分析[J]. 工程力学, 2018, 35(9): 170-179. https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX201809021.htmXIAO Jun-hua, ZHANG De, WANG Yan-hai, et al. Study on interface stress between ballast and subgrade for traditional railway based on coupled DEM-FDM[J]. Engineering Mechanics, 2018, 35(9): 170-179. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX201809021.htm [17] XIAO Jun-hua, XUE Li-hua, ZHANG De, et al. Coupled DEM-FEM methods for analyzing contact stress between railway ballast and subgrade considering real particle shape characteristic [J]. Computers and Geotechnics, 2023, 155(5): 105192. [18] 邵帅, 吕泉江, 纪丹阳, 等. 针对有砟道床动力特性分析的嵌入式离散元-有限元耦合方法[J]. 计算力学学报, 2021, 38(2): 180-187. https://www.cnki.com.cn/Article/CJFDTOTAL-JSJG202102008.htmSHAO Shuai, LYU Quan-jiang, JI Dan-yang, et al. An embedded discrete-finite element coupling method for dynamic analysis of ballast bed[J]. Chinese Journal of Computational Mechanics, 2021, 38(2): 180-187. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JSJG202102008.htm [19] 黎旭, 严颖, 季顺迎. 考虑道砟侵切土质路基的有砟轨道离散元-有限元耦合方法[J]. 固体力学学报, 2021, 42(4): 407-419. https://www.cnki.com.cn/Article/CJFDTOTAL-GTLX202104004.htmLI Xu, YAN Ying, JI Shun-ying. Coupled discrete-finite element method for ballasted railway track considering penetration phenomena between ballast layer and soil subgrade[J]. Chinese Journal of Solid Mechanics, 2021, 42(4): 407-419. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GTLX202104004.htm [20] INDRARATNA B, IONESCU D, CHRISTIE H D. Shear behavior of railway ballast based on large-scale triaxial tests[J]. Journal of Geotechnical and Geoenvironmental Engineering, 1998, 124(5): 439-449. [21] 蒋明镜. 现代土力学研究的新视野——宏微观土力学[J]. 岩土工程学报, 2019, 41(2): 195-254. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201902002.htmJIANG Ming-jing. New paradigm for modern soil mechanics: geomechanics from micro to macro[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(2): 195-254. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201902002.htm [22] 孙其诚, 程晓辉, 季顺迎, 等. 岩土类颗粒物质宏-细观力学研究进展[J]. 力学进展, 2011, 41(3): 351-371. https://www.cnki.com.cn/Article/CJFDTOTAL-LXJZ201103008.htmSUN Qi-cheng, CHENG Xiao-hui, JI Shun-ying, et al. Advances in the micro-macro mechanics of granular soil materials[J]. Advances in Mechanics, 2011, 41(3): 351-371. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-LXJZ201103008.htm [23] JIANG M J, KONRAD J M, LEROUEIL S. An efficient technique for generating homogeneous specimens for DEM studies[J]. Computers and Geotechnics, 2003, 30(7): 579-597. [24] 金磊, 曾亚武. 土石混合体宏细观力学特性和变形破坏机制的三维离散元精细模拟[J]. 岩石力学与工程学报, 2018, 37(6): 1540-1550. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201806023.htmJIN Lei, ZENG Ya-wu. Refined simulation for macro- and meso-mechanical properties and failure mechanism of soil-rock mixture by 3D DEM [J]. Chinese Journal of Rock Mechanics and Engineering, 2018, 37(6): 1540-1550. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201806023.htm [25] QU Tong-ming, FENG Y T, WANG Yong, et al. Discrete element modelling of flexible membrane boundaries for triaxial tests [J]. Computers and Geotechnics, 2019, 115: 103154. [26] 张强, 汪小刚, 赵宇飞, 等. 基于围压柔性加载的土石混合体大型三轴试验离散元模拟研究[J]. 岩土工程学报, 2019, 41(8): 1545-1554. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201908023.htmZHANG Qiang, WANG Xiao-gang, ZHAO Yu-fei, et al. Discrete element simulation of large-scale triaxial tests on soil-rock mixtures based on flexible loading of confining pressure[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(8): 1545-1554. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201908023.htm [27] 蒋成龙, 许成顺, 张小玲, 等. 三维柔性边界构建方法及其对砾质土变形发展影响的离散元数值研究[J]. 土木工程学报, 2021, 54(5): 77-86. https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC202105008.htmJIANG Cheng-long, XU Cheng-shun, ZHANG Xiao-ling, et al. Three-dimensional flexible boundary construction method and its influence on the deformation development of gravel soil by discrete element simulation[J]. China Civil Engineering Journal, 2021, 54(5): 77-86. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC202105008.htm [28] PHAM T, ZAMAN M W, VU T. Modeling triaxial testing with flexible membrane to investigate effects of particle size on strength and strain properties of cohesionless soil[J]. Transportation Infrastructure Geotechnology, 2022, 9(4): 417-441. [29] ZHOU Shi-chen, ZHOU Bo, XUE Shi-feng. A three-dimensional DEM modelling of triaxial test on gas hydrate-bearing sediments considering flexible boundary condition[J]. Marine Georesources and Geotechnology, 2021(1): 1-20. [30] MA Gang, ZHOU Wei, CHANG Xiao-lin, et al. Combined FEM/DEM modeling of triaxial compression tests for rockfills with polyhedral particles[J]. International Journal of Geomechanics, 2014, 14(4): 04014014. [31] ZHU Hua-xiang, YIN Zhen-yu, ZHANG Qiang. A novel coupled FDM-DEM modelling method for flexible membrane boundary in laboratory tests[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2019, 44(3): 389-404. [32] AGNOLIN I, ROUX J N. Internal states of model isotropic granular packings. Ⅰ. Assembling process, geometry, and contact networks[J]. Physical Review E: Statistical, Nonlinear, and Soft Matter Physics, 2007, 76(6): 061302. [33] 张杰, 聂如松, 黄茂桐, 等. 基于柔性边界的非饱和接触模型参数标定方法[J]. 工程科学与技术, 2023, 55(6): 132-141. https://www.cnki.com.cn/Article/CJFDTOTAL-SCLH202306021.htmZHANG Jie, NIE Ru-song, HUANG Mao-tong, et al. Parameter calibration method of unsaturated contact model based on flexible boundary[J]. Advanced Engineering Sciences, 2023, 55(6): 132-141. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SCLH202306021.htm [34] NIE Zhi-hong, QI Qun, WANG Xiang, et al. DEM investigation of strain behaviour and force chain evolution of gravel-sand mixtures subjected to cyclic loading[J]. Particuology, 2022, 68(9): 13-28. -