留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

体内融合热管的通风刹车盘传热数值计算

夏侯国伟 王瑞麒 乔妮 刘豪 龙葵 顾小松 穆康

夏侯国伟, 王瑞麒, 乔妮, 刘豪, 龙葵, 顾小松, 穆康. 体内融合热管的通风刹车盘传热数值计算[J]. 交通运输工程学报, 2025, 25(1): 211-220. doi: 10.19818/j.cnki.1671-1637.2025.01.015
引用本文: 夏侯国伟, 王瑞麒, 乔妮, 刘豪, 龙葵, 顾小松, 穆康. 体内融合热管的通风刹车盘传热数值计算[J]. 交通运输工程学报, 2025, 25(1): 211-220. doi: 10.19818/j.cnki.1671-1637.2025.01.015
XIAHOU Guo-wei, WANG Rui-qi, QIAO Ni, LIU Hao, LONG Kui, GU Xiao-song, MU Kang. Heat transfer numerical calculation of ventilated brake disc with internal fusion heat pipe[J]. Journal of Traffic and Transportation Engineering, 2025, 25(1): 211-220. doi: 10.19818/j.cnki.1671-1637.2025.01.015
Citation: XIAHOU Guo-wei, WANG Rui-qi, QIAO Ni, LIU Hao, LONG Kui, GU Xiao-song, MU Kang. Heat transfer numerical calculation of ventilated brake disc with internal fusion heat pipe[J]. Journal of Traffic and Transportation Engineering, 2025, 25(1): 211-220. doi: 10.19818/j.cnki.1671-1637.2025.01.015

体内融合热管的通风刹车盘传热数值计算

doi: 10.19818/j.cnki.1671-1637.2025.01.015
基金项目: 

国家自然科学基金项目 52008034

湖南省自然科学基金项目 2021JJ30710

长沙理工大学科研创新项目 CXCLY2022096

详细信息
    作者简介:

    夏侯国伟(1963-),男,湖南长沙人,长沙理工大学教授,从事高效传热传质研究

  • 中图分类号: U463.5

Heat transfer numerical calculation of ventilated brake disc with internal fusion heat pipe

Funds: 

National Natural Science Foundation of China 52008034

Natural Science Foundation of Hunan Province 2021JJ30710

Scientific Research and Innovation Program of Changsha University of Science and Technology CXCLY2022096

More Information
    Corresponding author: XIAHOU Guo-wei(1963-), male, professor, xh_gw@126.com
Article Text (Baidu Translation)
  • 摘要: 为强化现有通风刹车盘(VBD)的散热,防止其发生热衰退,提高车辆的刹车安全性,提出了一种体内融合整体热管的新型通风刹车盘,即热管盘(HPD);为检验HPD的传热性能及其改进效果,在相同工况的条件下对HPD、VBD进行了基于FLUENT的详细的传热数值模拟计算,通过数值计算探究了HPD的传热性能与3个影响因素,即充液率、热流密度、转速的内在关系,并将HPD、VBD的传热性能进行对比。研究结果表明:HPD的最佳充液率在小热流密度下(不大于4 700 W·m-2)为35%,在大热流密度下(大于4 700 W·m-2)为40%;HPD的热阻会随热流密度增加而下降,随转速的升高而增加;HPD传热效果较VBD有显著提升,譬如在充液率为35%、转速为23.1 rad·s-1、热流密度为5 839 W·m-2时,HPD的盘面平均温度及盘面最高温度较VBD可分别下降49和53 K,同时热阻可降低28%;HPD的盘面平均温度偏差虽略高于VBD,但因其强大的散热能力,HPD的局部超温反而得到改善;HPD联通空间设置的承压块保证了其结构强度和承压能力,且其预测失效循环次数较VBD还可增加269次。可见,提出的新型热管盘从强化传热着手,可明显降低其工作温度,从而提高通风刹车盘的寿命与刹车安全性。

     

  • 图  1  热管盘

    Figure  1.  Heat pipe disc

    图  2  结构剖视

    Figure  2.  Structural cutaway

    图  3  静应力结果

    Figure  3.  Static stress results

    图  4  计算域和边界网格

    Figure  4.  Computational domains and boundary meshes

    图  5  不同充液率下平均温度随热流密度变化

    Figure  5.  Variations of average temperature with heat flow density for different liquid filling rates

    图  6  不同充液率下热阻随热流密度变化

    Figure  6.  Variations of thermal resistance with heat flow density for different liquid filling rates

    图  7  不同转速下对流换热系数变化

    Figure  7.  Variation of convective heat transfer coefficient for different rotational speeds

    图  8  不同转速下盘面平均温度随热流密度变化

    Figure  8.  Variations of average temperature of disk surface with heat flow density at different rotational speeds

    图  9  不同转速下热阻随热流密度变化

    Figure  9.  Variations of thermal resistance with heat flow density at different rotational speeds

    图  10  HPD和VBD的盘面平均温度比较

    Figure  10.  Comparison of average temperatures of disk surface for HPD and VBD

    图  11  盘面温度分布

    Figure  11.  Distributions of plate temperature

    图  12  试验台

    Figure  12.  Laboratory bench

    表  1  HPD与VBD的结构尺寸

    Table  1.   Structural dimensions of HPD and VBD

    参数 HPD VBD
    盘片外径/mm 200 200
    盘片内径/mm 100 100
    盘片厚度(含中空)/mm 11 5
    叶片数/片 12 12
    盘片间距/mm 5 5
    盘片1壁厚度/mm 2
    盘片2壁厚度/mm 3
    承压块数/块 12
    下载: 导出CSV

    表  2  制动盘的疲劳性能参数

    Table  2.   Fatigue performance parameters of brake disc

    参数 疲劳强度系数/ MPa 疲劳延性系数 疲劳延性指数 疲劳强度系数
    不锈钢304 985 0.103 -0.255 -0.102
    下载: 导出CSV
  • [1] HONG Y, JUNG T, CHO C. Effect of heat treatment on crack propagation and performance of disk brake with cross drilled holes[J]. International Journal of Automotive Technology, 2019, 20(1): 177-185.
    [2] TIGANE R, BAUWENS D, HUDE O, et al. On the local corrosion in a thin layer of electrolyte separating two materials: specific aspects and their contribution to pad-to-disk stiction in automobile brake system[J]. Journal of Solid State Electrochemistry, 2021, 25(4): 895-904.
    [3] YANG Zhi-yong, HAN Jian-min, LI Wei-jing, et al. Analyzing the mechanisms of fatigue crack initiation and propagation in CRH EMU brake discs[J]. Engineering Failure Analysis, 2013, 34(7): 121-128.
    [4] 李涛涛. 灰铁刹车盘裂纹的失效分析[J]. 材料保护, 2020, 53(5): 152-155.

    LI Tao-tao. Analysis on cracking failure of gray cast iron brake disk[J]. Materials Protection, 2020, 53(5): 152-155.
    [5] GOO B, LIM C. Thermal fatigue of cast iron brake disk materials[J]. Journal of Mechanical Science and Technology, 2012, 26(6): 1719-1724.
    [6] KIM M S, YEOM Y T, PARK J H, et al. Development of nondestructive system for detecting the cracks in KTX brake disk using Rayleigh wave[J]. Journal of the Korean Society for Nondestructive Testing, 2017, 37(1): 29-36.
    [7] 戴海燕, 张继华, 李长玉. 某危险品运输车制动器设计及瞬态传热分析[J]. 中国工程机械学报, 2020, 18(3): 264-268.

    DAI Hai-yan, ZHANG Ji-hua, LI Chang-yu. Brake design and transient heat transfer analysis of a dangerous goods transport vehicle[J]. Proceedings of the Chinese Engineering Machinery Society, 2020, 18(3): 264-268.
    [8] 解文昊, 周润东, 王颂扬, 等. 一种车用制动器摩擦片温度场分析[J]. 技术与市场, 2023, 30(3): 83-85.

    XIE Wen-hao, ZHOU Run-dong, WANG Song-yang, et al. Design and analysis of a disc brake based on Ansys Workbench[J]. Technology and Market, 2023, 30(3): 83-85.
    [9] 韩宁, 赵河明, 王维. 汽车高速盘制动的摩擦温度场及热应力分析[J]. 机械研究与应用, 2013, 26(6): 72-74, 77.

    HAN Ning, ZHAO He-ming, WANG Wei. Friction temperature field and thermal-stress analysis of auto brake disc at high speed[J]. Mechanical Research and Application, 2013, 26(6): 72-74, 77.
    [10] 刘洋. 盘式制动器制动片数量对其温度场及应力场的影响分析[J]. 当代化工研究, 2022, 21(13): 124-128.

    LIU Yang. Analysis of the influence of the number of brake pads on the temperature field and stress field of disc brake[J]. Contemporary Chemical Research, 2022, 21(13): 124-128.
    [11] 孟祥宝, 任靖日. 基于ANSYS汽车盘式制动器的有限元分析[J]. 装备制造技术, 2014, 35(7): 201-203.

    MENG Xiang-bao, REN Jing-ri. Finite element analysis of automotive disc brakes based on ANSYS[J]. Equipment Manufacturing Technology, 2014, 35(7): 201-203.
    [12] 黄频波, 付成龙, 李斌. 碳/碳化硅复合材料刹车盘/片热应力场分析[J]. 合成纤维, 2019, 48(11): 43-48.

    HUANG Pin-bo, FU Cheng-long, LI Bin. Analysis of thermo-stress field in automotive brake system made of carbon fiber reinforced silicon carbide composite[J]. Synthetic Fiber, 2019, 48(11): 43-48.
    [13] 黄晓弟, 钟毅, 黄建阳, 等. 钢面铝基汽车刹车盘的研究[J]. 装备维修技术, 2015, 3(8): 80-85.

    HUANG Xiao-di, ZHONG Yi, HUANG Jian-yang, et al. Research of steel clad aluminum brake for automobiles[J]. Equipment Maintenance Technology, 2015, 3(8): 80-85.
    [14] 仇溢, 种详远, 甄明晖, 等. 氧化石墨烯对树脂基摩擦材料性能的影响[J]. 表面技术, 2021, 50(3): 276-283, 322.

    QIU Yi, CHONG Xiang-yuan, ZHEN Ming-hui, et al. Effect of graphene oxide on properties of resin-based friction materials[J]. Surface Technology, 2021, 50(3): 276-283, 322.
    [15] PRANTA M H, RABBI M S, BANIK S C, et al. A computational study on structural and thermal behavior of modified disk brake rotors[J]. Alexandria Engineering Journal, 2022, 61(3): 1882-1890.
    [16] KO D G, MOHAMED ABDELMOTALIB H, IM I T, et al. Cooling efficiency according to shape changes to the straight ventilation hole in carbon-ceramic brake disks[J]. International Journal of Automotive Technology, 2018, 19(6): 1103-1110.
    [17] 杨立民. 径向通风制动盘的设计及散热[J]. 太原重型机械学院学报, 1983, 4(2): 127-134.

    YANG Li-min. Design and heat dissipation of radial ventilation brake disc[J]. Journal of Taiyuan Institute of Heavy Machinery, 1983, 4(2): 127-134.
    [18] WANG Lu, LU Xin, LI Hao-seng, et al. A new experimental method to study the convective heat transfer characteristics of the interior passages of ventilated disc brakes[J]. International Journal of Thermal Sciences, 2022, 61(179): 107675.
    [19] 郜立焕, 杨毅, 杨玮, 等. 大型车辆刹车盘叶型的设计[J]. 兰州理工大学学报, 2007, 33(6): 54-57.

    GAO Li-huan, YANG Yi, YANG Wei, et al. Design of blade profile of disk brake on large-sized vehicles[J]. Journal of Lanzhou University of Technology, 2007, 33(6): 54-57.
    [20] ATKINS M D, KIENHÖFER F W, LU T J, et al. The role of secondary flows and separation in convective heat transfer in a rotating radial vane brake disk[J]. Journal of Heat Transfer, 2021, 143(8): 081801.
    [21] KIM M G, KO S K, LEE M W. A study for the cooling performance of a brake with heatpipes[J]. Journal of Advanced Marine Engineering and Technology, 2008, 32(4): 563-569.
    [22] JIAN Qi-fei, LI Wang, YAN Shui. Thermal analysis of ventilated brake disc based on heat transfer enhancement of heat pipe[J]. International Journal of Thermal Sciences, 2020, 155(1): 106356.
    [23] 刘小钪, 陈功, 林鸿亮. 304不锈钢热退火酸洗产品硬度异常研究分析[J]. 冶金与材料, 2023, 43(9): 13-15.

    LIU Xiao-kang, CHEN Gong, LIN Hong-liang. Research and analysis on hardness anomaly of 304 stainless steel hot annealing and pickling products[J]. Metallurgy and Materials, 2023, 43(9): 13-15.
    [24] 秦岭, 苏小平, 苏国营. 汽车制动盘热-结构耦合仿真及寿命预测[J]. 机械设计与制造, 2017, 56(2): 203-206.

    QIN Ling, SU Xiao-ping, SU Guo-ying. Thermal-structural coupling simulation and life prediction of disc brake[J]. Mechanical Design and Manufacturing, 2017, 56(2): 203-206.
  • 加载中
图(12) / 表(2)
计量
  • 文章访问数:  18
  • HTML全文浏览量:  11
  • PDF下载量:  8
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-08-15
  • 刊出日期:  2025-02-25

目录

    /

    返回文章
    返回