Heat transfer numerical calculation of ventilated brake disc with internal fusion heat pipe
-
摘要: 为强化现有通风刹车盘(VBD)的散热,防止其发生热衰退,提高车辆的刹车安全性,提出了一种体内融合整体热管的新型通风刹车盘,即热管盘(HPD);为检验HPD的传热性能及其改进效果,在相同工况的条件下对HPD、VBD进行了基于FLUENT的详细的传热数值模拟计算,通过数值计算探究了HPD的传热性能与3个影响因素,即充液率、热流密度、转速的内在关系,并将HPD、VBD的传热性能进行对比。研究结果表明:HPD的最佳充液率在小热流密度下(不大于4 700 W·m-2)为35%,在大热流密度下(大于4 700 W·m-2)为40%;HPD的热阻会随热流密度增加而下降,随转速的升高而增加;HPD传热效果较VBD有显著提升,譬如在充液率为35%、转速为23.1 rad·s-1、热流密度为5 839 W·m-2时,HPD的盘面平均温度及盘面最高温度较VBD可分别下降49和53 K,同时热阻可降低28%;HPD的盘面平均温度偏差虽略高于VBD,但因其强大的散热能力,HPD的局部超温反而得到改善;HPD联通空间设置的承压块保证了其结构强度和承压能力,且其预测失效循环次数较VBD还可增加269次。可见,提出的新型热管盘从强化传热着手,可明显降低其工作温度,从而提高通风刹车盘的寿命与刹车安全性。Abstract: In order to strengthen the heat dissipation of existing ventilated brake discs (VBDs), prevent thermal degradation, and improve the braking safety of vehicles, a new type of VBD incorporating an integral heat pipe in the body, i.e., heat pipe disc (HPD), was proposed. To examine the heat transfer performance of HPD and its improvement effect, detailed FLUENT-based numerical simulation calculations of heat transfer in both HPD and VBD were conducted under the same working conditions. The intrinsic relationships between the heat transfer performance of HPD and three influencing factors, namely liquid filling rate, heat flow density, and rotational speed, were investigated through numerical calculations, and the heat transfer performance of HPD was compared to that of VBD. Research results show that the optimal liquid filling rate of HPD is 35% at low heat flow densities (not exceeding 4 700 W·m-2) and 40% at high heat flow densities (exceeding 4 700 W·m-2). The thermal resistance of HPD decreases with increasing heat flow density and increases with increasing rotational speed. The heat transfer effect of HPD has been significantly improved compared to VBD. For example, at a liquid filling rate of 35%, rotational speed of 23.1 rad·s-1, and heat flow density of 5 839 W·m-2, the average and maximum temperatures of the surface of HPD reduce by 49 K and 53 K, respectively, compared to VBD. At the same time, the thermal resistance reduces by 28%. Although the deviation of the average temperature of the surface of HPD is slightly higher than that of VBD, the local over-temperature of HPD has been improved due to its superior heat dissipation ability. The pressurized blocks in the connecting space of HPD ensure its structural strength and pressure-bearing capacity. As a result, its predicted number of failure cycles is 269 times higher than that of VBD. So the proposed HPD can significantly reduce its operating temperatures by enhancing heat transfer, thus improving the lifespan and safety of VBD.
-
Key words:
- automotive engineering /
- ventilated brake disc /
- numerical simulation /
- heat pipe /
- two-phase flow /
- heat transfer
-
表 1 HPD与VBD的结构尺寸
Table 1. Structural dimensions of HPD and VBD
参数 HPD VBD 盘片外径/mm 200 200 盘片内径/mm 100 100 盘片厚度(含中空)/mm 11 5 叶片数/片 12 12 盘片间距/mm 5 5 盘片1壁厚度/mm 2 盘片2壁厚度/mm 3 承压块数/块 12 表 2 制动盘的疲劳性能参数
Table 2. Fatigue performance parameters of brake disc
参数 疲劳强度系数/ MPa 疲劳延性系数 疲劳延性指数 疲劳强度系数 不锈钢304 985 0.103 -0.255 -0.102 -
[1] HONG Y, JUNG T, CHO C. Effect of heat treatment on crack propagation and performance of disk brake with cross drilled holes[J]. International Journal of Automotive Technology, 2019, 20(1): 177-185. [2] TIGANE R, BAUWENS D, HUDE O, et al. On the local corrosion in a thin layer of electrolyte separating two materials: specific aspects and their contribution to pad-to-disk stiction in automobile brake system[J]. Journal of Solid State Electrochemistry, 2021, 25(4): 895-904. [3] YANG Zhi-yong, HAN Jian-min, LI Wei-jing, et al. Analyzing the mechanisms of fatigue crack initiation and propagation in CRH EMU brake discs[J]. Engineering Failure Analysis, 2013, 34(7): 121-128. [4] 李涛涛. 灰铁刹车盘裂纹的失效分析[J]. 材料保护, 2020, 53(5): 152-155.LI Tao-tao. Analysis on cracking failure of gray cast iron brake disk[J]. Materials Protection, 2020, 53(5): 152-155. [5] GOO B, LIM C. Thermal fatigue of cast iron brake disk materials[J]. Journal of Mechanical Science and Technology, 2012, 26(6): 1719-1724. [6] KIM M S, YEOM Y T, PARK J H, et al. Development of nondestructive system for detecting the cracks in KTX brake disk using Rayleigh wave[J]. Journal of the Korean Society for Nondestructive Testing, 2017, 37(1): 29-36. [7] 戴海燕, 张继华, 李长玉. 某危险品运输车制动器设计及瞬态传热分析[J]. 中国工程机械学报, 2020, 18(3): 264-268.DAI Hai-yan, ZHANG Ji-hua, LI Chang-yu. Brake design and transient heat transfer analysis of a dangerous goods transport vehicle[J]. Proceedings of the Chinese Engineering Machinery Society, 2020, 18(3): 264-268. [8] 解文昊, 周润东, 王颂扬, 等. 一种车用制动器摩擦片温度场分析[J]. 技术与市场, 2023, 30(3): 83-85.XIE Wen-hao, ZHOU Run-dong, WANG Song-yang, et al. Design and analysis of a disc brake based on Ansys Workbench[J]. Technology and Market, 2023, 30(3): 83-85. [9] 韩宁, 赵河明, 王维. 汽车高速盘制动的摩擦温度场及热应力分析[J]. 机械研究与应用, 2013, 26(6): 72-74, 77.HAN Ning, ZHAO He-ming, WANG Wei. Friction temperature field and thermal-stress analysis of auto brake disc at high speed[J]. Mechanical Research and Application, 2013, 26(6): 72-74, 77. [10] 刘洋. 盘式制动器制动片数量对其温度场及应力场的影响分析[J]. 当代化工研究, 2022, 21(13): 124-128.LIU Yang. Analysis of the influence of the number of brake pads on the temperature field and stress field of disc brake[J]. Contemporary Chemical Research, 2022, 21(13): 124-128. [11] 孟祥宝, 任靖日. 基于ANSYS汽车盘式制动器的有限元分析[J]. 装备制造技术, 2014, 35(7): 201-203.MENG Xiang-bao, REN Jing-ri. Finite element analysis of automotive disc brakes based on ANSYS[J]. Equipment Manufacturing Technology, 2014, 35(7): 201-203. [12] 黄频波, 付成龙, 李斌. 碳/碳化硅复合材料刹车盘/片热应力场分析[J]. 合成纤维, 2019, 48(11): 43-48.HUANG Pin-bo, FU Cheng-long, LI Bin. Analysis of thermo-stress field in automotive brake system made of carbon fiber reinforced silicon carbide composite[J]. Synthetic Fiber, 2019, 48(11): 43-48. [13] 黄晓弟, 钟毅, 黄建阳, 等. 钢面铝基汽车刹车盘的研究[J]. 装备维修技术, 2015, 3(8): 80-85.HUANG Xiao-di, ZHONG Yi, HUANG Jian-yang, et al. Research of steel clad aluminum brake for automobiles[J]. Equipment Maintenance Technology, 2015, 3(8): 80-85. [14] 仇溢, 种详远, 甄明晖, 等. 氧化石墨烯对树脂基摩擦材料性能的影响[J]. 表面技术, 2021, 50(3): 276-283, 322.QIU Yi, CHONG Xiang-yuan, ZHEN Ming-hui, et al. Effect of graphene oxide on properties of resin-based friction materials[J]. Surface Technology, 2021, 50(3): 276-283, 322. [15] PRANTA M H, RABBI M S, BANIK S C, et al. A computational study on structural and thermal behavior of modified disk brake rotors[J]. Alexandria Engineering Journal, 2022, 61(3): 1882-1890. [16] KO D G, MOHAMED ABDELMOTALIB H, IM I T, et al. Cooling efficiency according to shape changes to the straight ventilation hole in carbon-ceramic brake disks[J]. International Journal of Automotive Technology, 2018, 19(6): 1103-1110. [17] 杨立民. 径向通风制动盘的设计及散热[J]. 太原重型机械学院学报, 1983, 4(2): 127-134.YANG Li-min. Design and heat dissipation of radial ventilation brake disc[J]. Journal of Taiyuan Institute of Heavy Machinery, 1983, 4(2): 127-134. [18] WANG Lu, LU Xin, LI Hao-seng, et al. A new experimental method to study the convective heat transfer characteristics of the interior passages of ventilated disc brakes[J]. International Journal of Thermal Sciences, 2022, 61(179): 107675. [19] 郜立焕, 杨毅, 杨玮, 等. 大型车辆刹车盘叶型的设计[J]. 兰州理工大学学报, 2007, 33(6): 54-57.GAO Li-huan, YANG Yi, YANG Wei, et al. Design of blade profile of disk brake on large-sized vehicles[J]. Journal of Lanzhou University of Technology, 2007, 33(6): 54-57. [20] ATKINS M D, KIENHÖFER F W, LU T J, et al. The role of secondary flows and separation in convective heat transfer in a rotating radial vane brake disk[J]. Journal of Heat Transfer, 2021, 143(8): 081801. [21] KIM M G, KO S K, LEE M W. A study for the cooling performance of a brake with heatpipes[J]. Journal of Advanced Marine Engineering and Technology, 2008, 32(4): 563-569. [22] JIAN Qi-fei, LI Wang, YAN Shui. Thermal analysis of ventilated brake disc based on heat transfer enhancement of heat pipe[J]. International Journal of Thermal Sciences, 2020, 155(1): 106356. [23] 刘小钪, 陈功, 林鸿亮. 304不锈钢热退火酸洗产品硬度异常研究分析[J]. 冶金与材料, 2023, 43(9): 13-15.LIU Xiao-kang, CHEN Gong, LIN Hong-liang. Research and analysis on hardness anomaly of 304 stainless steel hot annealing and pickling products[J]. Metallurgy and Materials, 2023, 43(9): 13-15. [24] 秦岭, 苏小平, 苏国营. 汽车制动盘热-结构耦合仿真及寿命预测[J]. 机械设计与制造, 2017, 56(2): 203-206.QIN Ling, SU Xiao-ping, SU Guo-ying. Thermal-structural coupling simulation and life prediction of disc brake[J]. Mechanical Design and Manufacturing, 2017, 56(2): 203-206. -