Review on road infrastructure carbon emission accounting and low-carbon reduction technologies based on LCA
-
摘要: 为了厘清生命周期评价(LCA)方法在道路基础设施碳排放核算方法以及现有减排技术的发展状况,通过定量挖掘现有文献方法,明确了当前道路交通系统碳排放的研究热点;总结了道路基础设施LCA碳排放核算分析框架,对比分析了不同类型LCA的碳排放核算方法和评估工具的特点;按照原材料获取、施工建造、运营使用、养护维修、报废回收5个生命阶段,分别总结了道路基础设施各阶段的碳排放贡献水平、影响因素与主要的减排措施。研究结果表明:在道路基础设施全生命周期中,材料生产和使用阶段对碳排放量的贡献最大;材料生产、建设、使用、维护等阶段碳排放主要影响因素分别源于材料及其生产加工方案、路面类型与结构、施工机械、车辆排放、养护技术及其导致的交通延误等;相应地,优化材料生产过程、使用清洁生产技术和回收材料,缩短材料运输距离、选用环保修复技术等方法则是道路基础设施全生命周期中主要的减排措施;未来道路基础设施LCA可开展建立现场核算数据库、构建标准化的碳核算体系框架、制定标准化的评估方法等工作,为实现道路基础设施的低碳可持续发展提供技术支持。Abstract: To clarify the application of life cycle assessment (LCA) in carbon emission accounting methods for road infrastructure and the development status of existing emission reduction technologies, the current research hotspots on carbon emissions from road transportation systems were identified through quantitative analysis of existing literature. The carbon emission accounting analysis framework for road infrastructure LCA was summarized, and the characteristics of carbon emission accounting methods and evaluation tools for different types of LCA were comparatively analyzed. According to the five life stages, i.e., raw material acquisition, construction, operation and use, maintenance and repair, and scrapping and recycling, the carbon emission contribution levels, influencing factors, and main emission reduction measures of road infrastructure at each stage were summarized respectively. The research results show that during the entire life cycle of road infrastructure, the material production and use stages contribute the most to carbon emissions. The main factors affecting carbon emissions during the stages of material production, construction, use, and maintenance are derived from materials and their production and processing plans, road surface types and structures, construction machinery, vehicle emissions, maintenance techniques, and the resulting traffic delays. Correspondingly, the primary emission reduction measures throughout the entire life cycle of road infrastructure include optimizing material production processes, using clean production technologies and recycling materials, shortening material transportation distances, and selecting environmentally friendly restoration technologies. Some future studies, such as establishing on-site accounting databases, building standardized carbon accounting system frameworks, and developing standardized evaluation methods, could be carried out for road infrastructure LCA, to provide technical support for the low-carbon and sustainable development of road infrastructure.
-
表 1 不同类型生命周期评价方法对比
Table 1. Comparison of different types of LCA methods
方法类型 优点 缺点 适用范围 P-LCA 数据较有针对性,结果较准确 生命周期清单不完整,过程数据存在缺失;分析过程较为耗时 单个产品、项目 EIO-LCA 生命周期清单较详尽, 可涵盖上游/间接环境影响且截断误差、时间成本以及复杂度较低 生命周期边界不完整且缺少详细过程信息,数据更新慢、数据精度低;不同部门对经济汇总的做法很难评估;经济的输入-输出只涉及不同部门,而消费者被排除在外 行业、区域、国家 H-LCA 生命周期清单最完整、最准确 存在重复计算,遗漏PCA与IOA边界分析,特定研究中对该方法的描述不清晰,使用困难;缺少实时更新,缺乏可直接使用的自动化软件 单个产品、项目行业、区域、国家 表 2 生命周期评价工具
Table 2. LCA tools
工具名称 研发者(年份) 主要应用领域 主要特点 相关性 PaLATE[24] 加州大学伯克利分校(2003) 道路交通碳排放评估 具有生命周期思维,可分析不同阶段的碳排放贡献 与CHANGER和asPECT相关,但更侧重于整个道路交通系统的碳排放评估 ECORCE[25] 法国交通科学技术研究所(2008) 生态系统评估 能够识别潜在的生态问题和短期/长期影响,评估多种生态因素,进行多样性分析 与Roadprint在生态方面有相似之处 CHANGER[26] 国际道路联盟(2009) 道路交通系统温室气体排放评估 综合评估道路交通系统的温室气体排放,考虑不同因素对碳排放的影响 与Roadprint和ECORCE相关,但更专注于交通系统的温室气体排放 Roadprint[27] 华盛顿大学(2012) 公路路面评价 能够评估新建和修复路面,可以作为一个升级版本的PaLATE,操作灵活 路面建设和维护方面的生态评估工具 asPECT[28] 运输研究实验室(2012) 沥青路面碳排放评估 能够进行细化的碳排放分析,以嵌入式方式集成在路面设计软件中 与Roadprint不同,专注于沥青路面的碳排放评估 PE-2[29] 密歇根技术大学(2012) 项目排放评估 综合定量评估项目各个阶段的碳排放 与以上工具相比,更专注于项目整体的排放评估 表 3 材料生产阶段主要材料消耗量和碳排放量
Table 3. Main material consumptions and carbon emissions in material production stage
材料类型 消耗量 碳排放量/t 炸药 1.02×103 t 2.71×103 铁 5.47×103 t 2.86×103 矿粉 4.78×104 t 4.01×103 沥青 4.69×104 t 1.14×104 砂石 5.05 m3 1.51×104 生石灰 3.47×105 t 2.78×105 水泥 4.78×105 t 3.36×105 钢材 2.29×105 t 3.78×105 表 4 维修1 km标准高速公路材料消耗量和机械投入量[55]
Table 4. Material consumption and mechanical input for repairing 1-kilometer standard expressway[55]
材料类型 消耗量 机器类型 能源消耗量 柴油/kg 汽油/kg 电力/(kW·h) 石油沥青 485.6 t 沥青拌合设备 50 637.4 20 864.8 改性沥青 160.7 t 轮胎式装载机 3 630.0 乳化沥青 43.8 t 自卸车 16 538.5 230.58 碎石 5 676.6 m3 沥青混合料摊铺机 789.3 水 463.6 t 光轮压路机 5 354.5 水泥 275.2 t 平地机 479.7 表 5 温拌技术与热拌技术排放对比
Table 5. Comparison of emissions between warm-mix technology and hot-mix technology
测试项目 热拌沥青 温拌沥青 降幅比例/% 二氧化碳排放量/% 2.6 1.0 61.5 碳氧化合物排放量/(mg·m-3) 151 40 73.5 一氧化碳排放量/(mg·m-3) 104.0 91.3 12.2 二氧化硫排放量/(104 mg·m-3) 13.0 3.3 74.6 烟尘排放量/(mg·m-3) 5.60 2.59 53.8 -
[1] 刘西多, 封顺天, 刘笑笑, 等. 2022数字道路白皮书[R]. 雄安: 中国电信数字城市研究院, 2022.LIU Xi-duo, FENG Shun-tian, LIU Xiao-xiao, et al. 2022 digital roads white paper[R]. Xiong'an: China Telecom Digital City Research Institute, 2022. [2] 陈涛, 李晓阳, 陈斌. "双碳"目标下交通运输业碳排放脱钩效应与峰值预测[J]. 交通运输工程学报, 2024, 24(4): 104-116. doi: 10.19818/j.cnki.1671-1637.2024.04.008 CHEN Tao, LI Xiao-yang, CHEN Bin. Decoupling effect and peak prediction of carbon emission in transportation industry under dual-carbon target[J]. Journal of Traffic and Transportation Engineering, 2024, 24(4): 104-116. doi: 10.19818/j.cnki.1671-1637.2024.04.008 [3] 丘建栋, 徐祥, 屈新明, 等. 城市道路交通移动源碳排放核算方法[J]. 城市交通, 2023, 21(4): 77-86.QIU Jian-dong, XU Xiang, QU Xin-ming, et al. Method for accounting urban on-road mobile source carbon emissions[J]. Urban Transport of China, 2023, 21(4): 77-86. [4] 何青, 李晔, 张鑫. 道路系统全生命周期碳排放量化分析框架: 基于国际标准[J]. 城市交通, 2022, 20(1): 102-109, 43.HE Qing, LI Ye, ZHANG Xin. Quantitative analysis framework of road system life-cycle carbon emissions under international standards[J]. Urban Transport of China, 2022, 20(1): 102-109, 43. [5] 鲁娇, 方向晨, 黎元生, 等. 道路沥青碳足迹研究[J]. 现代化工, 2016, 36(1): 12-16.LU Jiao, FANG Xiang-chen, LI Yuan-sheng, et al. Carbon footprint of paving asphalt[J]. Modern Chemical Industry, 2016, 36(1): 12-16. [6] VEGA A D L, SANTOS J, MARTINEZ-ARGUELLES G. Life cycle assessment of hot mix asphalt with recycled concrete aggregates for road pavements construction[J]. International Journal of Pavement Engineering, 2022, 23(4): 923-936. doi: 10.1080/10298436.2020.1778694 [7] CHONG D, WANG Y H. Impacts of flexible pavement design and management decisions on life cycle energy consumption and carbon footprint[J]. The International Journal of Life Cycle Assessment, 2017, 22(6): 952-971. doi: 10.1007/s11367-016-1202-x [8] JIA X L, QIN X F, ZHU J Y, et al. Carbon emission pattern of driving car on vertical curves of highway[J]. Sustainability, 2023, 15(8): 6460. doi: 10.3390/su15086460 [9] ALAM M R, HOSSAIN K, BUTT A A, et al. Life cycle assessment of asphalt pavement maintenance and rehabilitation techniques: A study for the City of St. John's[J]. Canadian Journal of Civil Engineering, 2020, 47(12): 1320-1326. doi: 10.1139/cjce-2019-0540 [10] MA F, DONG W H, FU Z, et al. Life cycle assessment of greenhouse gas emissions from asphalt pavement maintenance: A case study in China[J]. Journal of Cleaner Production, 2021, 288: 125595. doi: 10.1016/j.jclepro.2020.125595 [11] XIE J, WANG Z H, WANG F S, et al. The life cycle energy consumption and emissions of asphalt pavement incorporating basic oxygen furnace slag by comparative study[J]. Sustainability, 2021, 13(8): 4540. doi: 10.3390/su13084540 [12] ALAM S, KUMAR A, DAWES L. Roughness optimization of road networks: An option for carbon emission reduction by 2030[J]. Journal of Transportation Engineering, Part B: Pavements, 2020, 146(4): 04020062. doi: 10.1061/JPEODX.0000203 [13] HUANG Y Q, WOLFRAM P, MILLER R, et al. Mitigating life cycle GHG emissions of roads to be built through 2030: Case study of a Chinese province[J]. Journal of Environmental Management, 2022, 319: 115512. doi: 10.1016/j.jenvman.2022.115512 [14] 魏芝玲. 公路沥青路面预防性养护措施[J]. 城市建设理论研究, 2024, 3: 148-150.WEI Zhi-ling. Preventive maintenance measures for highway asphalt pavement[J]. Theoretical Research in Urban Construction, 2024, 3: 148-150. [15] SHI J C, GONG H R, CONG L, et al. Evaluating and quantifying segregation in asphalt pavement construction: A state-of-the-practice survey[J]. Construction and Building Materials, 2023, 383: 131205. doi: 10.1016/j.conbuildmat.2023.131205 [16] 解超, 王思思, 吕彬. 基于LCA的北京市透水水泥混凝土路面的环境影响分析[J]. 环境工程, 2022, 40(9): 118-125.XIE Chao, WANG Si-si, LV Bin. Environmental impact analysis of permeable cement concrete pavement in Beijing based on life cycle assessment[J]. Environmental Engineering, 2022, 40(9): 118-125. [17] 毕雅珺. 基于生命周期评价的中国清洁燃煤发电系统的环境影响研究[D]. 武汉: 华中科技大学, 2020.BI Ya-jun. Environmental evaluation of Chinese clean coal-fired power systems using life cycle assessment[D]. Wuhan: Huazhong University of Science & Technology, 2020. [18] 王长波, 张力小, 庞明月. 生命周期评价方法研究综述-兼论混合生命周期评价的发展与应用[J]. 自然资源学报, 2015, 30(7): 1232-1242.WANG Chang-bo, ZHANG Li-xiao, PANG Ming-yue. A review on hybrid life cycle assessment: Development and application[J]. Journal of Natural Resources, 2015, 30(7): 1232-1242. [19] ISLAM S, PONNAMBALAM S G, LAM H L. Review on life cycle inventory: Methods, examples and applications[J]. Journal of Cleaner Production, 2016, 136: 266-278. doi: 10.1016/j.jclepro.2016.05.144 [20] CONG P L, DU R Y, GAO H L, et al. Comparison and assessment of carbon dioxide emissions between alkali-activated materials and OPC cement concrete[J]. Journal of Traffic and Transportation Engineering (English Edition), 2024, 11(5): 918-938. doi: 10.1016/j.jtte.2023.07.011 [21] CRAWFORD R H, BONTINCK P A, STEPHAN A, et al. Hybrid life cycle inventory methods-A review[J]. Journal of Cleaner Production, 2018, 172: 1273-1288. doi: 10.1016/j.jclepro.2017.10.176 [22] SANTOS J, BRYCE J, FLINTSCH G, et al. A life cycle assessment of in-place recycling and conventional pavement construction and maintenance practices[J]. Structure and Infrastructure Engineering, 2015, 11(9): 1199-1217. doi: 10.1080/15732479.2014.945095 [23] LOIJOS A, SANTERO N, OCHSENDORF J. Life cycle climate impacts of the US concrete pavement network[J]. Resources, Conservation and Recycling, 2013, 72: 76-83. doi: 10.1016/j.resconrec.2012.12.014 [24] MUENCH S T. Roadway construction sustainability impacts[J]. Transportation Research Record: Journal of the Transportation Research Board, 2010(2151): 36-45. [25] JULLIEN A, DAUVERGNE M, PROUST C. Road LCA: The dedicated ECORCE tool and database[J]. The International Journal of Life Cycle Assessment, 2015, 20(5): 655-670. doi: 10.1007/s11367-015-0858-y [26] HUANG Y, HAKIM B, ZAMMATARO S. Measuring the carbon footprint of road construction using CHANGER[J]. International Journal of Pavement Engineering, 2013, 14(6): 590-600. doi: 10.1080/10298436.2012.693180 [27] MUENCH S T, LIN Y Y, KATARA S, et al. Roadprint: Practical pavement life cycle assessment (LCA) using generally available data[J]. Transportation Research Record: Journal of the Transportation Research Board, 2022(2676): 298-311. [28] HUANG Y, SPRAY A, PARRY T. Sensitivity analysis of methodological choices in road pavement LCA[J]. The International Journal of Life Cycle Assessment, 2013, 18(1): 93-101. doi: 10.1007/s11367-012-0450-7 [29] MUKHERJEE A, SATTAW W B, CASS D. Project emission estimator: Tools for constructors and agencies for assessing greenhouse gas emissions of highway construction projects[J]. Transportation Research Record: Journal of the Transportation Research Board, 2013(2366): 57-65. [30] LIU N, WANG Y Q, BAI Q, et al. Road life-cycle carbon dioxide emissions and emission reduction technologies: A review[J]. Journal of Traffic and Transportation Engineering: English Edition, 2022, 9(4): 532-555. doi: 10.1016/j.jtte.2022.06.001 [31] MAO R C, DUAN H B, DONG D, et al. Quantification of carbon footprint of urban roads via life cycle assessment: Case study of a megacity-Shenzhen, China[J]. Journal of Cleaner Production, 2017, 166: 40-48. doi: 10.1016/j.jclepro.2017.07.173 [32] 黄山倩, 黄学文, 高硕晗, 等. 基于LCA的高速公路建设全过程碳排放核算[J]. 交通运输研究, 2022, 8(6): 72-80, 89.HUANG Shan-qian, HUANG Xue-wen, GAO Shuo-han, et al. Carbon emission calculation of whole expressway construction phase based on LCA theory[J]. Transport Research, 2022, 8(6): 72-80, 89. [33] 韩子阳. 高速公路桥梁全生命周期碳足迹研究[D]. 南昌: 南昌工程学院, 2023.HAN Zi-yang. Carbon footprint of expressway bridges in life cycle[D]. Nanchang: Nanchang Institute of Technology, 2023. [34] CHOWDHURY R, APUL D, FRY T. A life cycle based environmental impacts assessment of construction materials used in road construction[J]. Resources, Conservation and Recycling, 2010, 54(4): 250-255. doi: 10.1016/j.resconrec.2009.08.007 [35] SANTOS J, FERREIRA A, FLINTSCH G. A life cycle assessment model for pavement management: Road pavement construction and management in Portugal[J]. International Journal of Pavement Engineering, 2015, 16(4): 315-336. doi: 10.1080/10298436.2014.942862 [36] KANG S, YANG R, OZER H, et al. Life-cycle greenhouse gases and energy consumption for material and construction phases of pavement with traffic delay[J]. Transportation Research Record: Journal of the Transportation Research Board, 2014(2428): 27-34. [37] WANG F S, XIE J, WU S P, et al. Life cycle energy consumption by roads and associated interpretative analysis of sustainable policies[J]. Renewable and Sustainable Energy Reviews, 2021, 141: 110823. doi: 10.1016/j.rser.2021.110823 [38] LI D, WANG Y Q, LIU Y Y, et al. Estimating life-cycle CO2 emissions of urban road corridor construction: A case study in Xi'an, China[J]. Journal of Cleaner Production, 2020, 255: 120033. doi: 10.1016/j.jclepro.2020.120033 [39] PICARDO A, GALVáN M J, SOLTERO V M, et al. A comparative life cycle assessment and costing of lighting systems for environmental design and construction of sustainable roads[J]. Buildings, 2023, 13(4): 983. doi: 10.3390/buildings13040983 [40] CELAURO C, CORRIERE F, GUERRIERI M, et al. Environmentally appraising different pavement and construction scenarios: A comparative analysis for a typical local road[J]. Transportation Research Part D: Transport and Environment, 2015, 34: 41-51. doi: 10.1016/j.trd.2014.10.001 [41] LIU Y Y, WANG Y Q, LI D. Estimation and uncertainty analysis on carbon dioxide emissions from construction phase of real highway projects in China[J]. Journal of Cleaner Production, 2017, 144: 337-346. doi: 10.1016/j.jclepro.2017.01.015 [42] GRAEL P F F, OLIVEIRA L S B L, OLIVEIRA D S B L, et al. Life cycle inventory and impact assessment for an asphalt pavement road construction: A case study in Brazil[J]. The International Journal of Life Cycle Assessment, 2021, 26(2): 402-416. doi: 10.1007/s11367-020-01842-5 [43] BATOULI M, BIENVENU M, MOSTAFAVI A. Putting sustainability theory into roadway design practice: Implementation of LCA and LCCA analysis for pavement type selection in real world decision making[J]. Transportation Research Part D: Transport and Environment, 2017, 52: 289-302. doi: 10.1016/j.trd.2017.02.018 [44] JIANG R, WU P. Estimation of environmental impacts of roads through life cycle assessment: A critical review and future directions[J]. Transportation Research Part D: Transport and Environment, 2019, 77: 148-163. doi: 10.1016/j.trd.2019.10.010 [45] BARBIERI D M, LOU B W, WANG F S, et al. Assessment of carbon dioxide emissions during production, construction and use stages of asphalt pavements[J]. Transportation Research Interdisciplinary Perspectives, 2021, 11: 100436. doi: 10.1016/j.trip.2021.100436 [46] GBOLOGAH F E, LI H Y, RODGERS M O. Demonstrating an empirical tool to predict fleet-wide heavy-duty vehicle fuel-saving benefits from low rolling resistance tires[J]. Transportation Research Record: Journal of the Transportation Research Board, 2019(2673): 361-372. [47] AKBARIAN M, MOEINI-ARDAKANI S S, ULM F J, et al. Mechanistic approach to pavement-vehicle interaction and its impact on life-cycle assessment[J]. Transportation Research Record: Journal of the Transportation Research Board, 2012(2306): 171-179. [48] LOUHGHALAM A, AKBARIAN M, ULM F J. Carbon management of infrastructure performance: Integrated big data analytics and pavement-vehicle-interactions[J]. Journal of Cleaner Production, 2017, 142: 956-964. doi: 10.1016/j.jclepro.2016.06.198 [49] WANG T, LEE I S, KENDALL A, et al. Life cycle energy consumption and GHG emission from pavement rehabilitation with different rolling resistance[J]. Journal of Cleaner Production, 2012, 33: 86-96. doi: 10.1016/j.jclepro.2012.05.001 [50] CHUPIN O, PIAU J M, CHABOT A. Evaluation of the structure-induced rolling resistance (SRR) for pavements including viscoelastic material layers[J]. Materials and Structures, 2013, 46(4): 683-696. doi: 10.1617/s11527-012-9925-z [51] NOSHADRAVAN A, WILDNAUER M, GREGORY J, et al. Comparative pavement life cycle assessment with parameter uncertainty[J]. Transportation Research Part D: Transport and Environment, 2013, 25: 131-138. doi: 10.1016/j.trd.2013.10.002 [52] 张彤彤. 京津城际不同交通工具全生命周期评价及碳减排路径研究[D]. 北京: 北京交通大学, 2023.ZHANG Tong-tong. Life cycle assessment and carbon emission reduction path of different vehicles in Beijing-Tianjin intercity[D]. Beijing: Beijing Jiaotong University, 2023. [53] 付佩, 蔡旭, 刘浚哲, 等. 耦合不同车辆类型的城市道路交通全生命周期评价研究[J]. 汽车工程学报, 2023, 13(3): 416-430.FU Pei, CAI Xu, LIU Jun-zhe, et al. Life cycle assessment of urban road traffic for various different vehicle types[J]. Chinese Journal of Automotive Engineering, 2023, 13(3): 416-430. [54] 宋晓聪, 邓陈宁, 沈鹏, 等. 基于生命周期评价的纯电动汽车环境影响和碳足迹分析[J]. 环境科学研究, 2023, 36(11): 2179-2188.SONG Xiao-cong, DENG Chen-ning, SHEN Peng, et al. Environmental impact and carbon footprint analysis of pure electric vehicles based on life cycle assessment[J]. Research of Environmental Sciences, 2023, 36(11): 2179-2188. [55] 毛睿昌. 基于LCA的城市交通基础设施环境影响分析研究: 以深圳为例[D]. 深圳: 深圳大学, 2017.MAO Rui-chang. Assessing the environmental impacts of urban transport infrastructure via life cycle assessment: Case study of a mega city-Shenzhen, China[D]. Shenzhen: Shenzhen University, 2017. [56] JULLIEN A, DAUVERGNE M, CEREZO V. Environmental assessment of road construction and maintenance policies using LCA[J]. Transportation Research Part D: Transport and Environment, 2014, 29: 56-65. doi: 10.1016/j.trd.2014.03.006 [57] LIU Y Y, ZHU X D, WANG X X, et al. The influence of work zone management on user carbon dioxide emissions in life cycle assessment on highway pavement maintenance[J]. Advances in Meteorology, 2022, 2022: 1993564. [58] LIU Y Y, LI H J, WANG H H, et al. Integrated life cycle analysis of cost and CO2 emissions from vehicles and construction work activities in highway pavement service life[J]. Atmosphere, 2023, 14(2): 194. doi: 10.3390/atmos14020194 [59] WU P, XIA B, ZHAO X B. The importance of use and end-of-life phases to the life cycle greenhouse gas (GHG) emissions of concrete-A review[J]. Renewable and Sustainable Energy Reviews, 2014, 37: 360-369. doi: 10.1016/j.rser.2014.04.070 [60] NOLAND R B, HANSON C S. Life-cycle greenhouse gas emissions associated with a highway reconstruction: A New Jersey case study[J]. Journal of Cleaner Production, 2015, 107: 731-740. doi: 10.1016/j.jclepro.2015.05.064 [61] SAXE S, KASRAIAN D. Rethinking environmental LCA life stages for transport infrastructure to facilitate holistic assessment[J]. Journal of Industrial Ecology, 2020, 24(5): 1031-1046. doi: 10.1111/jiec.13010 [62] MILIUTENKO S, BJÖRKLUND A, CARLSSON A. Opportunities for environmentally improved asphalt recycling: The example of Sweden[J]. Journal of Cleaner Production, 2013, 43: 156-165. doi: 10.1016/j.jclepro.2012.12.040 [63] SOLLAZZO G, LONGO S, CELLURA M, et al. Impact analysis using life cycle assessment of asphalt production from primary data[J]. Sustainability, 2020, 12(24): 10171. doi: 10.3390/su122410171 [64] WU S P, XUE Y J, YE Q S, et al. Utilization of steel slag as aggregates for stone mastic asphalt (SMA) mixtures[J]. Building and Environment, 2007, 42(7): 2580-2585. doi: 10.1016/j.buildenv.2006.06.008 [65] SHU X, HUANG B S. Recycling of waste tire rubber in asphalt and Portland cement concrete: An overview[J]. Construction and Building Materials, 2014, 67: 217-224. doi: 10.1016/j.conbuildmat.2013.11.027 [66] GULOTTA T M, MISTRETTA M, PRATICò F G. A life cycle scenario analysis of different pavement technologies for urban roads[J]. Science of The Total Environment, 2019, 673: 585-593. doi: 10.1016/j.scitotenv.2019.04.046 [67] 梁波, 张海涛, 梁缘, 等. 温拌沥青技术研究综述[J]. 交通运输工程学报, 2023, 23(2): 24-46. doi: 10.19818/j.cnki.1671-1637.2023.02.002LIANG Bo, ZHANG Haitao, LIANG Yuan, et al. Review on warm mixing asphalt technology[J]. Journal of Traffic and Transportation Engineering, 2023 23(2): 24-46. doi: 10.19818/j.cnki.1671-1637.2023.02.002 [68] LIU J W, LI H, WANG Y, et al. Integrated life cycle assessment of permeable pavement: Model development and case study[J]. Transportation Research Part D: Transport and Environment, 2020, 85: 102381. doi: 10.1016/j.trd.2020.102381 [69] ZHOU X X, ZHANG Z Y, WANG H P, et al. Review on the properties and mechanisms of asphalt modified with bio-oil and biochar[J]. Journal of Road Engineering, 2024, 4(4): 421-432. doi: 10.1016/j.jreng.2024.06.001 [70] MORIMOTO R, SHIBAHARA N, KATO H. Life cycle assessment of road improvement projects considering innovations in vehicle technology and changes in traffic demand[J]. Journal of the Eastern Asia Society for Transportation Studies, 2013, 10: 1189-1202. [71] BONOLI A, DEGLI ESPOSTI A, MAGRINI C. A case study of industrial symbiosis to reduce GHG emissions: Performance analysis and LCA of asphalt concretes made with RAP aggregates and steel slags[J]. Frontiers in Materials, 2020, 7: 572955. doi: 10.3389/fmats.2020.572955 [72] 徐双. 不同结构材料的桥梁生命周期碳排放研究[D]. 武汉: 武汉理工大学, 2012.XU Shuang. The research on carbon emissions of different structural materials in bridge life cycle[D]. Wuhan: Wuhan University of Technology, 2012. -
下载: