留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

碳限额与交易政策下沥青混合料生产企业碳减排技术优化

李松 牛子恒 暴斌硕 郝婷婷 司春棣

李松, 牛子恒, 暴斌硕, 郝婷婷, 司春棣. 碳限额与交易政策下沥青混合料生产企业碳减排技术优化[J]. 交通运输工程学报, 2025, 25(5): 65-81. doi: 10.19818/j.cnki.1671-1637.2025.05.006
引用本文: 李松, 牛子恒, 暴斌硕, 郝婷婷, 司春棣. 碳限额与交易政策下沥青混合料生产企业碳减排技术优化[J]. 交通运输工程学报, 2025, 25(5): 65-81. doi: 10.19818/j.cnki.1671-1637.2025.05.006
LI Song, NIU Zi-heng, BAO Bin-shuo, HAO Ting-ting, SI Chun-di. Optimization of carbon emission reduction technology for asphalt mixture production enterprises under carbon cap-and-trade policy[J]. Journal of Traffic and Transportation Engineering, 2025, 25(5): 65-81. doi: 10.19818/j.cnki.1671-1637.2025.05.006
Citation: LI Song, NIU Zi-heng, BAO Bin-shuo, HAO Ting-ting, SI Chun-di. Optimization of carbon emission reduction technology for asphalt mixture production enterprises under carbon cap-and-trade policy[J]. Journal of Traffic and Transportation Engineering, 2025, 25(5): 65-81. doi: 10.19818/j.cnki.1671-1637.2025.05.006

碳限额与交易政策下沥青混合料生产企业碳减排技术优化

doi: 10.19818/j.cnki.1671-1637.2025.05.006
基金项目: 

国家自然科学基金项目 52378455

河北省高等学校社科研究2025年度项目 BJ2025302

详细信息
    作者简介:

    李松(1989-),男,河北邯郸人,石家庄铁道大学讲师,工学博士,从事路面性能评估与低碳公路建设研究

    通讯作者:

    司春棣(1980-),女,河北邯郸人,石家庄铁道大学教授,工学博士

  • 中图分类号: U414

Optimization of carbon emission reduction technology for asphalt mixture production enterprises under carbon cap-and-trade policy

Funds: 

National Natural Science Foundation of China 52378455

Social Science Project of Hebei Education Department for 2025 BJ2025302

More Information
Article Text (Baidu Translation)
  • 摘要: 为有效提升公路建设企业在沥青路面建设工程中的碳减排积极性,聚焦沥青面层建设期的碳排放量,对其各个阶段进行量化分析,确定了原材料生产阶段以及沥青混合料生产阶段中的集料加热环节为影响沥青面层建设期碳排放量的关键环节;以承担上述关键环节的沥青混合料生产企业为研究视角,针对性地选取固废利用和温拌2种碳减排技术,构建了碳限额与交易政策框架下的沥青混合料生产企业利润模型,并据此对不同碳减排技术的关键控制指标进行优化。研究结果表明:无论是采用固废利用还是沥青混合料温拌技术,只有当政府设定的碳配额超过企业实施碳减排技术所能达到的最低碳减排量时,沥青混合料生产企业才具备盈利的潜力;当碳配额处于企业实施碳减排技术所对应的最低和最高碳排放量之间时,沥青混合料生产企业需根据固废利用和温拌技术的不同特性,将固废掺量或集料加热温度控制在合理阈值内,才能确保企业实现盈利,从而实现对固废利用和温拌两种碳减排技术关键控制指标的优化。研究结论为沥青混合料生产企业在碳减排技术的科学选择与应用方面提供了有力的理论支撑。

     

  • 图  1  沥青混合料面层建设期阶段划分

    Figure  1.  Division of construction period of asphalt mixture pavement

    图  2  碳配额与碳排放量关系

    Figure  2.  Relationship between carbon quotas and carbon emissions

    图  3  采用固废利用技术时Ee2情形下沥青混合料生产企业利润变化趋势

    Figure  3.  Results of profit for asphalt mixture production enterprises under the condition of E < e2 when using solid waste utilization technology

    图  4  采用固废利用技术时e2Ee1情形下沥青混合料生产企业利润变化趋势

    Figure  4.  Results of profit for asphalt mixture production enterprises under the condition of e2 < E < e1 when using solid waste utilization technology

    图  5  采用固废利用技术时Ee情形下沥青混合料生产企业利润变化趋势

    Figure  5.  Results of profit for asphalt mixture production enterprises under the condition of E > e when using solid waste utilization technology

    图  6  采用沥青混合料温拌技术时Ee2情形下沥青混合料生产企业利润变化趋势

    Figure  6.  Results of profit for asphalt mixture production enterprises under the condition of E < e2 when using asphalt mixture warm-mix technology

    图  7  采用沥青混合料温拌技术时e2Ee1情形下沥青混合料生产企业利润变化趋势

    Figure  7.  Results of profit for asphalt mixture production enterprises under the condition of e2 < E < e1 when using asphalt mixture warm-mix technology

    图  8  采用沥青混合料温拌技术时e1Ee情形下沥青混合料生产企业利润变化趋势

    Figure  8.  Results of profit for asphalt mixture production enterprises under the condition of e1 < E < e when using asphalt mixture warm-mix technology

    图  9  采用沥青混合料温拌技术时Ee情形下沥青混合料生产企业利润变化趋势

    Figure  9.  Results of profit for asphalt mixture production enterprises under the condition of E > e when using asphalt mixture warm-mix technology

    表  1  不同路段沥青面层建设期各阶段碳排放排放量汇总

    Table  1.   Results of carbon emission of each step in asphalt mixture pavement construction

    生产阶段 路段1 路段2 路段3
    碳排放量/ kg 占比/% 碳排放量/ kg 占比/% 碳排放量/ kg 占比/%
    原材料生产阶段 原材料生产 26 735.20 37.92 85 421.80 38.22 13 677.22 36.35
    混合料生产阶段 集料堆料与上料 1 171.70 1.66 3 734.79 1.67 601.11 1.60
    集料干燥加热 28 570.69 40.52 88 699.23 39.69 15 488.85 41.17
    沥青脱桶加热 2 596.04 3.68 9 154.25 4.10 1 509.17 4.01
    沥青混合料拌合 1 507.54 2.14 4 800.94 2.15 776.96 2.06
    运输阶段 原材料运输 5 165.49 7.33 16 494.16 7.38 2 648.06 7.04
    沥青混合料运输 2 476.76 3.51 7 894.67 3.53 1 270.63 3.38
    混合料施工阶段 沥青混合料摊铺 637.22 0.90 2 019.31 0.90 327.22 0.87
    沥青混合料碾压 1 647.71 2.34 5 254.87 2.35 844.56 2.24
    总计 70 508.35 223 474.02 37 625.46
    注:碳排放量均为二氧化碳当量。
    下载: 导出CSV

    表  2  采用固废利用技术时企业利润对碳交易价格的敏感性结果(Ee2)

    Table  2.   Sensitivity of corporate profits to carbon trading prices when using solid waste utilization technology (E < e2)

    碳减排量/kg 不同碳配额(kg)下的敏感性结果
    0.0 0.2 0.4 0.6 0.8
    1.0 -2.0 -1.8 -1.6 -1.4 -1.2
    1.3 -1.7 -1.5 -1.3 -1.1 -0.9
    1.6 -1.4 -1.2 -1.0 -0.8 -0.6
    1.9 -1.1 -0.9 -0.7 -0.5 -0.3
    2.2 -0.8 -0.6 -0.4 -0.2 0.0
    下载: 导出CSV

    表  3  采用固废利用技术时企业利润对碳交易价格的敏感性结果(e2Ee1)

    Table  3.   Sensitivity of corporate profits to carbon trading prices when using solid waste utilization technology (e2 < E < e1)

    碳减排量/kg 不同碳配额(kg)下的敏感性结果
    0.8 1.0 1.5 2.0 2.5 3.0
    1.0 -1.2 -1.0 -0.5 0.0 0.5 1.0
    1.3 -0.9 -0.7 -0.2 0.3 0.8 1.3
    1.6 -0.6 -0.4 0.1 0.6 1.1 1.6
    1.9 -0.3 -0.1 0.4 0.9 1.4 1.9
    2.2 0.0 0.2 0.7 1.2 1.7 2.2
    下载: 导出CSV

    表  4  采用固废利用技术时企业利润对碳交易价格的敏感性结果(Ee)

    Table  4.   Sensitivity of corporate profits to carbon trading prices when using solid waste utilization technology (E > e)

    碳减排量/kg 不同碳配额(kg)下的敏感性结果
    3 4 5 6 7 8
    1.0 1.0 2.0 3.0 4.0 5.0 6.0
    1.3 1.3 2.3 3.3 4.3 5.3 6.3
    1.6 1.6 2.6 3.6 4.6 5.6 6.6
    1.9 1.9 2.9 3.9 4.9 5.9 6.9
    2.2 2.2 3.2 4.2 5.2 6.2 7.2
    下载: 导出CSV

    表  5  采用沥青混合料温拌技术时企业利润对碳交易价格的敏感性结果(Ee2)

    Table  5.   Sensitivity of corporate profits to carbon trading prices when using asphalt mixture warm-mix technology (E < e2)

    碳减排量/kg 不同碳配额(kg)下的敏感性结果
    5 6 7 8 9 10
    3.0 -9 -8 -7 -6 -5 -4
    4.0 -8 -7 -6 -5 -4 -3
    5.0 -7 -6 -5 -4 -3 -2
    6.0 -6 -5 -4 -3 -2 -1
    7.0 -5 -4 -3 -2 -1 0
    下载: 导出CSV

    表  6  采用沥青混合料温拌技术时企业利润对碳交易价格的敏感性结果(e2Ee1)

    Table  6.   Sensitivity of corporate profits to carbon trading prices when using asphalt mixture warm-mix technology (e2 < E < e1)

    碳减排量/kg 不同碳配额(kg)下的敏感性结果
    10 11 12 13 14
    3.0 -4 -3 -2 -1 0
    4.0 -3 -2 -1 0 1
    5.0 -2 -1 0 1 2
    6.0 -1 0 1 2 3
    7.0 0 1 2 3 4
    下载: 导出CSV

    表  7  采用沥青混合料温拌技术时企业利润对碳交易价格的敏感性结果e1Ee

    Table  7.   Sensitivity of corporate profits to carbon trading prices when using asphalt mixture warm-mix technology (e1 < E < e)

    碳减排量/kg 不同碳配额(kg)下的敏感性结果
    10 11 12 13
    3.0 0 1 2 3
    4.0 1 2 3 4
    5.0 2 3 4 5
    6.0 3 4 5 6
    7.0 4 5 6 7
    下载: 导出CSV

    表  8  采用沥青混合料温拌技术时企业利润对碳交易价格的敏感性结果(Ee)

    Table  8.   Sensitivity of corporate profits to carbon trading prices when using asphalt mixture warm-mix technology (E > e)

    碳减排量/kg 不同碳配额(kg)下的敏感性结果
    17 18 19 20 21 22
    3.0 3 4 5 6 7 8
    4.0 4 5 6 7 8 9
    5.0 5 6 7 8 9 10
    6.0 6 7 8 9 10 11
    7.0 7 8 9 10 11 12
    下载: 导出CSV
  • [1] HUANG Y, ZHANG Y L, DENG F F, et al. Impacts of built-environment on carbon dioxide emissions from traffic: A systematic literature review[J]. International Journal of Environmental Research and Public Health, 2022, 19(24): 16898. doi: 10.3390/ijerph192416898
    [2] United Nations Environmental Programming. Emission gap report 2023: Broken record-temperatures hit new highs, yet world fails to cut emissions (again)[EB/OL]. (2023-11-15)[2024-12-22], https://www.unep.org/resources/emissions-gap-report-2023.
    [3] GUO M Y, MENG J. Exploring the driving factors of carbon dioxide emission from transport sector in Beijing-Tianjin-Hebei region[J]. Journal of Cleaner Production, 2019, 226: 692-705. doi: 10.1016/j.jclepro.2019.04.095
    [4] 陈胜利. 沥青路面施工技术在高速公路工程中的实践[J]. 建筑科学, 2022, 38(7): 164.

    CHEN Sheng-li. Practice of asphalt pavement construction technology in expressway engineering[J]. Building Science, 2022, 38(7): 164.
    [5] ISO 14040: 2006, Environmental management. Environmental management-life cycle assessment-principles and framework[S].
    [6] ISO 14044: 2006, Environmental management-life cycle assessment-requirements and guidelines[S].
    [7] HÄKKINEN T, MÄKELÄ K. Environmental adaption of concrete: environmental impact of concrete and asphalt pavements[M]. Helsinki: VTT Technical Research Centre of Finland, 1996.
    [8] 李莲莲. 公路设计与施工环节节能减排评价可行性研究[J]. 交通世界, 2016(28): 122-123.

    LI Lian-lian. Feasibility study on energy conservation and emission reduction evaluation in highway design and construction processes[J]. TranspoWorld, 2016(28): 122-123.
    [9] HAN Y, FU J C, ZHANG Q T, et al. Monitoring and evaluation of energy consumption in the whole process of asphalt pavement construction[J]. IOP Conference Series: Earth and Environmental Science, 2021, 804(4): 042058. doi: 10.1088/1755-1315/804/4/042058
    [10] 李慧, 彭夏清, 张静晓. 公路生命周期碳排放评估及其敏感性分析[J]. 公路工程, 2021, 46(2): 132-138.

    LI Hui, PENG Xia-qing, ZHANG Jing-xiao. The life cycle carbon emission assessment and sensitivity analysis of highway[J]. Highway Engineering, 2021, 46(2): 132-138.
    [11] MA F, SHA A M, LIN R Y, et al. Greenhouse gas emissions from asphalt pavement construction: A case study in China[J]. International Journal of Environmental Research and Public Health, 2016, 13(3): 351. doi: 10.3390/ijerph13030351
    [12] 赵芳敏, 蔡志洲, 彭令发. 公路碳评价指标体系初探[J]. 交通节能与环保, 2021, 17(6): 1-4, 9.

    ZHAO Fang-min, CAI Zhi-zhou, PENG Ling-fa. Study on highway carbon evaluation index system[J]. Transport Energy Conservation & Environmental Protection, 2021, 17(6): 1-4, 9.
    [13] 张磊, 王鹏, 杨永志, 等. 基于LCA的不同设计寿命沥青路面能耗排放分析[J]. 材料导报, 2024, 38(20): 122-131.

    ZHANG Lei, WANG Peng, YANG Yong-zhi, et al. Energy consumption and emission analysis of asphalt pavement with different design working years based on LCA[J]. Materials Reports, 2024, 38(20): 122-131.
    [14] OZCAN-DENIZ G, ZHU Y M. Multi-objective optimization of greenhouse gas emissions in highway construction projects[J]. Sustainable Cities and Society, 2017, 28: 162-171. doi: 10.1016/j.scs.2016.09.009
    [15] WANG B, LIU Q, WANG L, et al. A review of the port carbon emission sources and related emission reduction technical measures[J]. Environmental Pollution, 2023, 320: 121000. doi: 10.1016/j.envpol.2023.121000
    [16] WEI J Y, WANG C X. Improving interaction mechanism of carbon reduction technology innovation between supply chain enterprises and government by means of differential game[J]. Journal of Cleaner Production, 2021, 296: 126578. doi: 10.1016/j.jclepro.2021.126578
    [17] ZHU J H, DOU Z X, YAN X, et al. Exploring the influencing factors of carbon neutralization in Chinese manufacturing enterprises[J]. Environmental Science and Pollution Research, 2023, 30(2): 2918-2944. doi: 10.1007/s11356-022-21386-5
    [18] SUN H X, YANG J. Optimal decisions for competitive manufacturers under carbon tax and cap-and-trade policies[J]. Computers & Industrial Engineering, 2021, 156: 107244.
    [19] LIN B Q, HUANG C C. Analysis of emission reduction effects of carbon trading: Market mechanism or government intervention?[J]. Sustainable Production and Consumption, 2022, 33: 28-37. doi: 10.1016/j.spc.2022.06.016
    [20] DONG Z, XIA C Y, FANG K, et al. Effect of the carbon emissions trading policy on the co-benefits of carbon emissions reduction and air pollution control[J]. Energy Policy, 2022, 165: 112998. doi: 10.1016/j.enpol.2022.112998
    [21] 李飚, 夏西强, 李秋月. 碳配额下碳交易对碳减排效应的影响及协调机制研究[J]. 中国管理科学, 2024, 32(8): 250-261.

    LI Biao, XIA Xi-qiang, LI Qiu-yue. Research on the influence of carbon trading on carbon emission reduction effect and coordination mechanism under carbon quotas[J]. Chinese Journal of Management Science, 2024, 32(8): 250-261.
    [22] 李林玲, 金陶胜, 赵星. 我国多层次碳市场体系构建的思考[J]. 财会通讯, 2024(16): 144-149.

    LI Lin-ling, JIN Tao-sheng, ZHAO Xing. Thoughts on the construction of multi-level carbon market system in China[J]. Communication of Finance and Accounting, 2024(16): 144-149.
    [23] 李晔, 李文翔, 魏愚獒. 道路交通碳排放权交易研究现状与展望[J]. 同济大学学报(自然科学版), 2018, 46(4): 465-471.

    LI Ye, LI Wen-xiang, WEI Yu-ao. Research progress and prospect of road transport carbon emissions trading[J]. Journal of Tongji University (Natural Science), 2018, 46(4): 465-471.
    [24] BARANDICA J M, FERNÁNDEZ-SÁNCHEZ G, BERZOSA Á, et al. Applying life cycle thinking to reduce greenhouse gas emissions from road projects[J]. Journal of Cleaner Production, 2013, 57: 79-91. doi: 10.1016/j.jclepro.2013.05.036
    [25] 刘志, 明晨宇, 郑小雪, 等. "强制+自愿"机制下碳互补供应链合作模式选择与收益分配研究[J]. 系统工程理论与实践, 2025, 45(7): 2264-2281.

    LIU Zhi, MING Chen-yu, ZHENG Xiao-xue, et al. Cooperation models selection and revenue allocation of carbon complementary supply chain under the "mandatory + voluntary" mechanism[J]. Systems Engineering-Theory & Practice, 2025, 45(7): 2264-2281
    [26] LINGHU D Z, WU X L, LAI K H, et al. Implementation strategy and emission reduction effectiveness of carbon cap-and-trade in heterogeneous enterprises[J]. International Journal of Production Economics, 2022, 248: 108501. doi: 10.1016/j.ijpe.2022.108501
    [27] LUO W, ZHANG Y R, GAO Y L, et al. Life cycle carbon cost of buildings under carbon trading and carbon tax system in China[J]. Sustainable Cities and Society, 2021, 66: 102509. doi: 10.1016/j.scs.2020.102509
    [28] TIAN J Z, LIU Y S, LI A L. The policy impact of carbon emission trading on building enterprises' total factor productivity in China[J]. Buildings, 2023, 13(6): 1493. doi: 10.3390/buildings13061493
    [29] WANG J J, PAN K, WANG C, et al. Integrated carbon emissions and carbon costs for bridge construction projects using carbon trading and tax systems-taking Beijing as an example[J]. Applied Sciences, 2022, 12(20): 10589. doi: 10.3390/app122010589
    [30] MLAKAR T. Taking the road less traveled: Highway construction and the carbon credit bonus[J]. Construction Lawyer, 2022, 42(1): 1-6.
    [31] LIU N, WANG Y, BAI Q, et al. Road life-cycle carbon dioxide emissions and emission reduction technologies: A review[J]. Journal of Traffic and Transportation Engineering (English Edition), 2022, 9(4): 532-555. doi: 10.1016/j.jtte.2022.06.001
    [32] 李婵. 高速公路沥青面层施工期碳排放测算研究[D]. 长沙: 长沙理工大学, 2018.

    LI Chan. Carbon emission calculation of asphalt surface of highway during the construction period[D]. Changsha: Changsha University of Science & Technology, 2018.
    [33] 彭波, 蔡春丽, 胡如安. 高速公路沥青路面能耗与碳排放评价[J]. 长安大学学报(自然科学版), 2016, 36(5): 8-15.

    PENG Bo, CAI Chun-li, HU Ru-an. Energy consumption and carbon emission evaluation of expressway asphalt pavement[J]. Journal of Chang'an University (Natural Science Edition), 2016, 36(5): 8-15.
    [34] 郝婷婷. 沥青面层建设周期碳排放评估分析与减排对策研究[D]. 石家庄: 石家庄铁道大学, 2024.

    HAO Ting-ting. Research on carbon emission assessment and emission reduction countermeasures in construction period of asphalt pavement[D]. Shijiazhuang: Shijiazhuang Tiedao University, 2024.
    [35] 张红波, 陈海涛, 徐升, 等. 橡胶改性沥青混合料路面建设能耗与碳排放评价[J]. 公路工程, 2021, 46(3): 154-164.

    ZHANG Hong-bo, CHEN Hai-tao, XU Sheng, et al. Evaluation on energy consumption and carbon emission of rubber modified asphalt mixture pavement[J]. Highway Engineering, 2021, 46(3): 154-164.
    [36] 何亮, 詹程阳, 吕松涛, 等. 钢渣沥青混合料应用现状[J]. 交通运输工程学报, 2020, 20(2): 15-33. doi: 10.19818/j.cnki.1671-1637.2020.02.002

    HE Liang, ZHAN Cheng-yang, LYU Song-tao, et al. Application status of steel slag asphalt mixture[J]. Journal of Traffic and Transportation Engineering, 2020, 20(2): 15-33. doi: 10.19818/j.cnki.1671-1637.2020.02.002
    [37] TAO G Y, XIAO Y, YANG L F, et al. Characteristics of steel slag filler and its influence on rheological properties of asphalt mortar[J]. Construction and Building Materials, 2019, 201: 439-446. doi: 10.1016/j.conbuildmat.2018.12.174
    [38] 林家南. 装配式混凝土构件生产阶段碳减排策略研究[D]. 苏州: 苏州科技大学, 2022.

    LIN Jia-nan. Research on carbon emission reduction strategies in the production stage of prefabricated concrete components[D]. Suzhou: Suzhou University of Science and Technology, 2022.
    [39] 尚文芳, 谷鑫涛, 李涛. 碳配额分配策略对绿色与非绿色产品制造商竞争的影响[J]. 管理现代化, 2024, 44(6): 157-166.

    SHANG Wen-fang, GU Xin-tao, LI Tao. Effects of carbon quota allocation strategies on competition between green and non-green product manufacturers[J]. Modernization of Management, 2024, 44(6): 157-166.
    [40] ZHU L J, LI J, XIAO F P. Carbon emission quantification and reduction in pavement use phase: A review[J]. Journal of Traffic and Transportation Engineering (English Edition), 2024, 11(1): 69-91. doi: 10.1016/j.jtte.2023.09.004
    [41] 王宗保, 钟鸣, 马晓凤. 基于多区域CGE的能源排放与运输融合政策研究[J]. 长安大学学报(自然科学版), 2024, 44(5): 194-203.

    WANG Zong-bao, ZHONG Ming, MA Xiao-feng. Analysis of combined emission and transportation policies using a multi-regional CGE model[J]. Journal of Chang'an University (Natural Science Edition), 2024, 44(5): 194-203.
    [42] 梁波, 张海涛, 梁缘, 等. 温拌沥青技术研究综述[J]. 交通运输工程学报, 2023, 23(2): 24-46. doi: 10.19818/j.cnki.1671-1637.2023.02.002

    LIANG Bo, ZHANG Hai-tao, LIANG Yuan, et al. Review on warm mixing asphalt technology[J]. Journal of Traffic and Transportation Engineering, 2023, 23(2): 24-46. doi: 10.19818/j.cnki.1671-1637.2023.02.002
    [43] 李旭阳, 索智, 罗亮. 温拌沥青混合料在生产阶段的节能减排量化分析[J]. 材料导报, 2020, 34(增1): 209-212.

    LI Xu-yang, SUO Zhi, LUO Liang. Quantitative analysis on energy saving and emission reduction of warm-mix asphalt mixture in production stage[J]. Materials Reports, 2020, 34(S1): 209-212.
  • 加载中
图(9) / 表(8)
计量
  • 文章访问数:  69
  • HTML全文浏览量:  28
  • PDF下载量:  25
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-01-02
  • 录用日期:  2025-06-06
  • 修回日期:  2025-05-10
  • 刊出日期:  2025-10-28

目录

    /

    返回文章
    返回