Influence of LCA allocation methods on the life cycle carbon emission from roads and uncertainty analysis
-
摘要:
为分析不同分配方法的选择对道路生命周期碳排放的影响,选择2种常见分配法(50/50和Cut-off),分别核算道路生命周期碳排放并进行对比;根据单因素敏感度分析方法,评估不同计算参数对碳排放对比的影响,识别影响对比2种分配方法的关键计算参数;引入参数的概率密度分布函数,量化对比中模型的计算参数不确定性,使用蒙特卡洛模拟方法,将计算参数的不确定性传递至结果。研究结果表明:50/50和Cut-off分配方法的碳排放比值分别约为1.022(无铣刨重铺)、1.024(1次铣刨重铺)、1.025(2次铣刨重铺)、1.026(3次铣刨重铺);不确定性分析后,比值分别下降至1.020、1.021、1.023、1.023,50/50与Cut-off分配方法的差异缩小,故分配方法的选择不会显著影响道路生命周期碳排放的核算;在不同铣刨重铺次数下,较少计算参数变化1%,碳排放比值的变化率与计算参数变化率的比值会超过0.012,影响50/50与Cut-off分配方法下的道路生命周期碳排放对比的关键参数为基层和底基层密度、生产柴油的N2O排放、路面旧料循环利用率。本研究通过对道路生命周期评价中分配方法选择的论证及不确定性分析框架的引入,进一步完善了道路生命周期碳排放核算方法,降低核算的不确定性。
Abstract:To analyze the effect of allocation method selection on the life cycle carbon emissions of roads, two common allocation methods (50/50 and Cut-off) were selected to quantify and compare the life cycle carbon emissions of roads. According to a single-factor sensitivity analysis, the influence of different parameters on the carbon emission comparison was evaluated to identify critical parameters affecting the comparison between the two allocation methods. Additionally, the probability density distribution functions of the parameters were introduced to quantify the parameter uncertainty of the model in comparison, and the Monte Carlo simulation method was used to propagate the parameter uncertainty to the results. Analysis results show that the carbon emission ratio of the 50/50 to the Cut-off allocation method is approximately 1.022 (no milling and resurfacing), 1.024 (one milling and resurfacing), 1.025 (two millings and resurfacings), and 1.026 (three millings and resurfacings), respectively. After the uncertainty analysis, the ratio decreases to 1.020, 1.021, 1.023, and 1.023, respectively. Since the difference between the 50/50 and Cut-off allocation methods is narrowed, the allocation method selection does not significantly influence the calculation of life cycle carbon emissions of roads. Moreover, despite different milling and resurfacing times, when the few calculation parameters change by 1%, the ratio of the rate of change in the carbon emission ratio to that in the calculation parameter exceeds 0.012. The density of the base and subbase, N2O emissions from diesel production, and the recycling rate of reclaimed pavement materials are critical parameters having an influence on the comparison of life cycle carbon emissions of roads between the 50/50 and the Cut-off allocation methods. The argumentation of allocation method selection in road life cycle assessment and the uncertainty analysis framework in this study can improve the method for calculating life cycle carbon emissions of roads and reduce the uncertainty in the calculations.
-
Key words:
- road engineering /
- carbon emission /
- life cycle assessment /
- allocation method /
- uncertainty analysis
-
表 1 道路拆除时混合料中单一材料的可回收率和质量占比
Table 1. Recovery rate and mass ratio of individual material in each mixture at the phase of road demolition
i、j j=1 j=2 j=3 i=1 R2, 1, 1=0,λ1, 1=4.76% R2, 1, 2=95.3%,λ1, 2=90.63% R2, 1, 3=0,λ1, 3=4.61% i=2 R2, 2, 1=0,λ2, 1=4.26% R2, 2, 2=95.3%,λ2, 2=91.60% R2, 2, 3=0,λ2, 3=4.14% i=3 R2, 3, 1=0,λ3, 1=4.66% R2, 3, 2=95.3%,λ3, 2=90.43% R2, 3, 3=0,λ3, 3=4.91% i=4~7 R2, 4~7, 1=0,λ4~7, 1=4.96% R2, 4~7, 2=95.3%,λ4~7, 2=89.78% R2, 4~7, 3=0,λ4~7, 3=5.25% 表 2 资源生产与使用的温室气体排放量
Table 2. Greenhouse gases from the production and the use of resources
资源名称 CO2/ (kg·kg-1) CH4/ (kg·kg-1) N2O/ (kg·kg-1) CO2eq/(kg·kg-1) 或[kg·(kW·h)-1] 说明 柴油 4.28 3.45×10-3 1.88×10-2 9.53 燃料生产时温室气体排放量参照文献[27]研究;燃料燃烧根据2006 IPCC国家温室气体指南中低位发热值和燃烧时气体有效排放系数计算 汽油 4.17 3.83×10-3 2.04×10-2 9.84 重油 4.23 3.09×10-3 1.71×10-2 9.00 石油沥青 1.37×10-1 3.92×10-4 1.48×10-1 文献[28] 改性沥青 2.96×10-1 1.09×10-3 3.28×10-1 集料 8.10×10-3 4.09×10-6 2.23×10-6 1.43×10-2 文献[29] 矿粉 7.17×10-3 7.17×10-3 文献[30] 水泥 8.42×10-1 1.61×10-3 8.90×10-1 文献[31] 电力 4.45×10-1 文献[32] 表 3 上面层回收工序中铣刨设备消耗量及能耗
Table 3. Equipment and energy consumption of milling surface layer during the recycling process
设备 设备消耗量及能耗 厚5 cm/ (台班· 1 000 m-2) 每增减1 cm/ (台班· 1 000 m-2) 汽油/ (t· 台班-1) 柴油/ (t· 台班-1) 路面铣刨机 0.30 0.06 0.190 5 自卸汽车 0.32 0.07 0.049 5 洒水汽车 0.08 0.02 0.034 3 表 4 上面层回收工序中破碎与筛分设备消耗量及能耗
Table 4. Equipment and energy consumption of crushing and sieving surface layer during the recycling process
设备 台班/m3 电力能耗/ (kW·h·台班-1) 柴油能耗/ (t·台班-1) 皮带运输机 0.050 4 21.25 自动破碎机 0.004 2 0.008 2 冲击式破碎机 0.004 2 473.84 圆锥破碎机 0.004 2 901.35 振动给料机 0.008 4 120.00 制砂机 0.004 2 800.00 表 5 道路各结构层在各工序的资源消耗量
Table 5. Resource consumption in each process of each layer of the road
结构层 资源消耗量 原材料生产 混合料生产 铺筑 废弃 回收 基层+底基层 集料:4.22×106 kg
水泥:2.22×105 kg柴油:665 kg
电力:1.20×103 kW·h柴油:626 kg 柴油:3.87×103 kg
汽油:136 kg柴油:3.06×103 kg
汽油:136 kg
电力:1.65×104 kW·h下面层 石油沥青:3.04×104 kg
矿粉:2.95×104 kg
集料:6.53×105 kg柴油:110 kg
重油:5.09×103 kg
电力:1.90×103 kW·h柴油:300 kg 柴油:568 kg
汽油:18 kg柴油:449 kg
汽油:18 kg
电力:2.71×103 kW·h中面层 改性沥青:2.49×104 kg
矿粉:2.62×104 kg
集料:4.83×105 kg柴油:82.2 kg
重油:3.82×103 kg
电力:1.43×103 kW·h柴油:226 kg 柴油:425 kg
汽油:12.9 kg柴油:336 kg
汽油:12.9 kg
电力:2.36×103 kW·h上面层 改性沥青:1.76×104 kg
矿粉:1.86×104 kg
集料:3.19×105 kg柴油:54.6 kg
重油:2.54×103 kg
电力:950 kW·h柴油:152 kg 柴油:281 kg
汽油:7.72 kg柴油:12.9 kg
汽油:7.72 kg
电力:1.83×103 kW·h说明 按照混合料配合比和道路结构,计算出各层原材料用量 根据《公路工程预算定额》,求出各层的设备台班消耗量;依据《公路工程机械台班费用定额》,确定每台班设备的能源消耗量;综合设备台班消耗量和相应的每台班设备能源消耗量 表 6 每功能单位道路各层原材料生产的碳排放
Table 6. Carbon emission from each layer of road due to virgin material production per function unit
kg i=1 EV, 1, 1=2.22×105(水泥);EV, 1, 2=4.22×106(集料);EV, 1, 3=0(水) i=2 EV, 2, 1=3.04×104(石油沥青);EV, 2, 2=6.53×105(集料);EV, 2, 3=2.95×104(矿粉) i=3 EV, 3, 1=2.49×104(改性沥青);EV, 3, 2=4.83×105(集料);EV, 3, 3=2.62×104(矿粉) i=4, 5, 6, 7 EV, 4~7, 1=1.76×104(改性沥青);EV, 4~7, 2=3.19×105(集料);EV, 4~7, 3=1.86×104(矿粉) 表 7 每功能单位道路各层混合料生产、道路铺筑、道路废弃的碳排放
Table 7. Carbon emission from each layer of road due to mixture production, construction and disposal per function unit
kg i=1 EP, 1=6.87×103(水泥稳定碎石混合料生产);EC, 1=5.97×103(基层和底基层铺筑);ED, 1=3.82×104(基层和底基层废弃);ER, out, 1=3.78×104 i=2 EP, 2=4.77×104(粗粒式沥青混合料生产);EC, 2=2.86×103(下面层铺筑);ED, 2=5.59×103(下面层废弃);ER, out, 2=5.66×103 i=3 EP, 3=3.57×104(改性沥青中粒式沥青混合料生产);EC, 3=2.16×103(中面层铺筑);ED, 3=4.17×103(中面层废弃);ER, out, 3=4.38×103 i=4, 5, 6, 7 EP, 4~7=2.38×104(改性沥青细粒式沥青混合料生产);EC, 4~7=1.45×103(上面层铺筑);ED, 4~7=2.76×103(上面层废弃);ER, out, 4~7=1.01×103 表 8 数据质量评分
Table 8. Indicator scores of data quality
得分 可靠性 完整性 时间相关性 地理相关性 技术相关性 1 测量且验证 足够时间内正常波动的代表性数据(范围覆盖所有地区) 研究与公布数据时间差低于3年 研究区域内 所研究工艺和材料 2 基于部分假设的验证数据;基于测量但未验证 足够时间内正常波动的代表性数据(范围覆盖50%以上地区) 研究与公布数据时间差低于6年 覆盖研究区域内平均值 所研究工艺和材料,来自其他研究 3 基于部分合理估计但未验证 代表性数据(范围覆盖50%以下地区);短时间内代表性数据(范围覆盖50%以上地区) 研究与公布数据时间差低于10年 相似生产条件 在研究工艺和材料,来自其他技术 4 合理估计 短时间内代表性数据(与研究相关部分地区) 研究与公布数据时间差低于15年 较少相似生产条件 有关工艺或材料 5 不合理估计 未知数据代表性 研究与公布数据时间差超过15年或未知 未知或生产条件差异明显 实验室数据或不同技术相关工艺 表 9 道路生命周期碳排放计算模型中部分计算参数的概率分布形状及特征参数
Table 9. Probability distribution shape and characteristic parameters of some parameters of the model for calculating road life cycle carbon emission
参数名称 概率分布形状 特征参数 路面旧料循环利用率 均匀分布 取值范围:0.800~0.953 每台班16~20 t轮胎式压路机的柴油消耗量 Beta分布 (α, β)=(1, 1);(A, B)=(0.029 68, 0.055 12) 生产每千克石油沥青的CO2排放 Beta分布 (α, β)=(2, 2);(A, B)=(0.102 6, 0.171 0) 生产每MJ柴油的CH4排放 Beta分布 (α, β)=(3, 3);(A, B)=(0.062 4, 0.093 6) 生产每吨细集料的柴油消耗量 Beta分布 (α, β)=(4, 4);(A, B)=(43.35, 58.65) GWP100(CH4) 正态分布 μ=29.8;σ=5.5 表 10 不同养护情景下道路生命周期碳排放的蒙特卡洛模拟结果
Table 10. Results of the Monte Carlo simulation of life cycle carbon emission from roads in different maintenance scenarios
指标 方法 无铣刨重铺 1次铣刨重铺 2次铣刨重铺 3次铣刨重铺 初始评估值 ECut-off/(kg·FU-1) 4.31×105 4.67×105 5.03×105 5.39×105 E50/50/(kg·FU-1) 4.41×105 4.78×105 5.16×105 5.54×105 q 1.022 4 1.023 9 1.025 3 1.026 5 描述统计平均值 ECut-off/(kg·FU-1) 4.34×105 4.72×105 5.08×105 5.44×105 E50/50/(kg·FU-1) 4.44×105 4.81×105 5.19×105 5.57×105 q 1.020 1 1.021 8 1.023 2 1.023 9 描述统计95% 置信度 ECut-off/(kg·FU-1) 8.35×102 9.77×102 1.12×103 1.26×103 E50/50/(kg·FU-1) 8.84×102 1.03×103 1.16×103 1.30×103 q 3.63×10-4 3.45×10-4 3.30×10-4 3.12×10-4 -
[1] 张金喜, 苏词, 王超, 等. 道路基础设施建设中的节能减排问题及技术综述[J]. 北京工业大学学报, 2022, 48(3): 243-260.ZHANG Jin-xi, SU Ci, WANG Chao, et al. Review of energy-saving and emission-reduction issues and technologies in the construction of road infrastructure[J]. Journal of Beijing University of Technology, 2022, 48(3): 243-260. [2] SANTOS J, BRESSI S, CEREZO V, et al. SUP&RDSS: A sustainability-based decision support system for road pave-ments[J]. Journal of Cleaner Production, 2019, 206: 524-540. doi: 10.1016/j.jclepro.2018.08.308 [3] 何亮, 李冠男, 张军辉, 等. 路面全寿命周期能耗与CO2排放分析研究进展[J]. 长安大学学报(自然科学版), 2018, 38(4): 10-20.HE Liang, LI Guan-nan, ZHANG Jun-hui, et al. Research progress on pavement life cycle energy consumption and carbon dioxide emission assessment[J]. Journal of Chang'an University (Natural Science Edition), 2018, 38(4): 10-20. [4] 李松, 牛子恒, 暴斌硕, 等. 碳限额与交易政策下沥青混合料生产企业碳减排技术优化[J]. 交通运输工程学报, 2025, 25(5): 65-81.LI Song, NIU Zi-heng, Bao Bin-shuo, et al. Optimization carbon emission reduction technology for asphalt mixture production enterprises under carbon cap and trade policy[J]. Journal of Traffic and Transportation Engineering, 2025, 25(5): 65-81. [5] HÄKKINEN T, MÄKELÄ K. Environmental adaptation of concrete environmental impact of concrete and asphalt pavements[R]. Espoo: VTT Technical Research Centre of Finland, 1996. [6] HARVEY J T, MEIJER J, OZER H, et al. Pavement life cycle assessment framework, FHWA-HIF-16-014[R]. Washington DC: Federal Highway Administration, 2016. [7] 郑健龙. 公路养护技术发展趋势[J]. 中国公路, 2021(14): 66-68.ZHENG Jian-long. Development trend of highway main-tenance technology[J]. China Highway, 2021(14): 66-68. [8] EKVALL T, BJÖRKLUND A, SANDIN G, et al. Modeling recycling in life cycle assessment[R]. Gothenburg: Swedish Life Cycle Center, 2020. [9] HERMANSSON F, EKVALL T, JANSSEN M, et al. Allo-cation in recycling of composites-the case of life cycle asse-ssment of products from carbon fiber composites[J]. The International Journal of Life Cycle Assessment, 2022, 27(3): 419-432. doi: 10.1007/s11367-022-02039-8 [10] SANTOS J, BRESSI S, CEREZO V, et al. Life cycle assess-ment of low temperature asphalt mixtures for road pavement surfaces: A comparative analysis[J]. Resources, Conserva-tion and Recycling, 2018, 138: 283-297. doi: 10.1016/j.resconrec.2018.07.012 [11] YANG R, KANG S, OZER H, et al. Environmental and economic analyses of recycled asphalt concrete mixtures based on material production and potential performance[J]. Resources, Conservation and Recycling, 2015, 104: 141-151. doi: 10.1016/j.resconrec.2015.08.014 [12] GIANI M I, DOTELLI G, BRANDINI N, et al. Compara-tive life cycle assessment of asphalt pavements using reclaimed asphalt, warm mix technology and cold in-place recycling[J]. Resources, Conservation and Recycling, 2015, 104: 224-238. doi: 10.1016/j.resconrec.2015.08.006 [13] CHEN X D, WANG H. Life cycle assessment of asphalt pave-ment recycling for greenhouse gas emission with temporal aspect[J]. Journal of Cleaner Production, 2018, 187: 148-157. doi: 10.1016/j.jclepro.2018.03.207 [14] ABDALLA A, FAHEEM A F, WALTERS E. Life cycle assessment of eco-friendly asphalt pavement involving multi-recycled materials: A comparative study[J]. Journal of Cleaner Production, 2022, 362: 132471. doi: 10.1016/j.jclepro.2022.132471 [15] YU B, JIAO L Y, NI F J, et al. Evaluation of plastic-rubber asphalt: Engineering property and environmental concern[J]. Construction and Building Materials, 2014, 71: 416-424. doi: 10.1016/j.conbuildmat.2014.08.075 [16] HASAN U, WHYTE A, AL JASSMI H. Life cycle assess-ment of roadworks in United Arab Emirates: Recycled construction waste, reclaimed asphalt pavement, warm-mix asphalt and blast furnace slag use against traditional approach[J]. Journal of Cleaner Production, 2020, 257: 120531. doi: 10.1016/j.jclepro.2020.120531 [17] CHEN C, HABERT G, BOUZIDI Y, et al. LCA allocation procedure used as an incitative method for waste recycling: An application to mineral additions in concrete[J]. Resour-ces, Conservation and Recycling, 2010, 54(12): 1231-1240. doi: 10.1016/j.resconrec.2010.04.001 [18] WANG X J, HUANG B J, WANG Y, et al. The impact of allocation methods on carbon benefits-A case study of con-struction waste recycling[J]. Resources, Conservation and Recycling, 2023, 199: 107269. doi: 10.1016/j.resconrec.2023.107269 [19] HUANG Y, SPRAY A, PARRY T. Sensitivity analysis of methodological choices in road pavement LCA[J]. The International Journal of Life Cycle Assessment, 2013, 18(1): 93-101. doi: 10.1007/s11367-012-0450-7 [20] ALLACKER K, MATHIEUX F, PENNINGTON D, et al. The search for an appropriate end-of-life formula for the purpose of the European Commission Environmental Foot-print initiative[J]. The International Journal of Life Cycle Assessment, 2017, 22(9): 1441-1458. doi: 10.1007/s11367-016-1244-0 [21] 冉茂平, 邓须红, 关佳希, 等. 基于LCA的道路基础设施碳排放核算与低碳减排技术综述[J]. 交通运输工程学报, 2025, 25(5): 23-37.RAN Mao-ping, DENG Xu-hong, GUAN Jia-xi, et al. Re-view on road infrastructure carbon emission accounting and low carbon reduction technology based on LCA[J]. 2025, 25(5): 23-37. [22] ZAMPORI L, PANT R. Suggestions for updating the Pro-duct Environmental Footprint (PEF) method, EUR 29682 EN[R]. Luxembourg: Publications Office of the European Union: Joint Research Centre (JRC), 2021. [23] IPCC. Climate change 2021: The physical science basis[R]. Cambridge: Cambridge University Press, 2021. [24] MA F, DONG WH, FU Z, et al. Life cycle assessment of greenhouse gas emissions from asphalt pavement main-tenance: A case study in China[J]. Journal of Cleaner Pro-duction, 2021, 288: 125595. doi: 10.1016/j.jclepro.2020.125595 [25] JING C, ZHANG J X, SONG B. An innovative evaluation method for performance of in-service asphalt pavement with semi-rigid base[J]. Construction and Building Materials, 2020, 235: 117376. doi: 10.1016/j.conbuildmat.2019.117376 [26] BHATIA P, CUMMIS C, Brown A, et al. The GHG proto-col product life cycle accounting and reporting standard[R]. New York: World Resources Institute and World Business Council for Sustainable Development, 2011. [27] 欧训民, 张希良. 中国终端能源的全生命周期化石能耗及碳强度分析[J]. 中国软科学, 2009(增2): 208-214.OU Xun-min, ZHANG Xi-liang. Fossil energy consumption and GHG emissions of final energy by LCA in China[J]. China Soft Science, 2009(S2): 208-214. [28] EUROPEAN BITUMEN ASSOCIATION. The Eurobitume life-cycle inventory for bitumen, Version 3.1[R]. Brussels: the European Bitumen Association, 2020. [29] HOSSAIN M U, POON C S, LO I M C, et al. Comparative environmental evaluation of aggregate production from recycled waste materials and virgin sources by LCA[J]. Resources, Conservation and Recycling, 2016, 109: 67-77. doi: 10.1016/j.resconrec.2016.02.009 [30] QIAO Y N, WANG Z Y, MENG F R, et al. Evaluating the economic and environmental impacts of road pavement using an integrated local sensitivity model[J]. Journal of Cleaner Production, 2022, 371: 133615. doi: 10.1016/j.jclepro.2022.133615 [31] 邵亦白, 刘宇, 郑焱, 等. 利废水泥熟料产品系统的生命周期清单分析方法及应用[J]. 中国水泥, 2022(11): 59-62.SHAO Yi-bai, LIU Yu, ZHENG Yan, et al. Life cycle inven-tory analysis method and application of waste cement clinker product system[J]. China Cement, 2022(11): 59-62. [32] 蔡博峰, 赵良, 张哲, 等. 中国区域电网二氧化碳排放因子研究(2023)[R]. 北京: 生态环境部环境规划院, 2023.CAI Bo-feng, ZHAO Liang, ZHANG Zhe, et al. China regional power grids carbon dioxide emission factors (2023)[R]. Beijing: Chinese Academy of Environmental Planning, 2023. [33] BRESSI S, PRIMAVERA M, SANTOS J. A comparative life cycle assessment study with uncertainty analysis of cement treated base (CTB) pavement layers containing recycled asphalt pavement (RAP) materials[J]. Resources, Conser-vation and Recycling, 2022, 180: 106160. doi: 10.1016/j.resconrec.2022.106160 [34] DIWEKAR U, AMEKUDZI-KENNEDY A, BAKSHI B, et al. A perspective on the role of uncertainty in sustainability science and engineering[J]. Resources, Conservation and Recycling, 2021, 164: 105140. doi: 10.1016/j.resconrec.2020.105140 [35] WEIDEMA B P, WESNÆS M S. Data quality management for life cycle inventories-An example of using data quality indicators[J]. Journal of Cleaner Production, 1996, 4(3/4): 167-174. [36] AZARIJAFARI H, YAHIA A, AMOR B. Assessing the indivi-dual and combined effects of uncertainty and variability sour-ces in comparative LCA of pavements[J]. The International Journal of Life Cycle Assessment, 2018, 23(9): 1888-1902. doi: 10.1007/s11367-017-1400-1 [37] CAO R J, LENG Z, YU H, et al. Comparative life cycle assessment of warm mix technologies in asphalt rubber pave-ments with uncertainty analysis[J]. Resources, Conservation and Recycling, 2019, 147: 137-144. doi: 10.1016/j.resconrec.2019.04.031 [38] YU B, WANG S Y, GU X Y. Estimation and uncertainty analysis of energy consumption and CO2 emission of asphalt pavement maintenance[J]. Journal of Cleaner Production, 2018, 189: 326-333. doi: 10.1016/j.jclepro.2018.04.068 [39] CANTER K G, KENNEDY D J, MONTGOMERY D C, et al. Screening stochastic life cycle assessment inventory models[J]. The International Journal of Life Cycle Assessment, 2002, 7(1): 18-26. doi: 10.1007/BF02978906 -
下载: