留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

双塔钢桁斜拉桥结构强健性计算方法

郑小博 赵煜 贺拴海 张岗

郑小博, 赵煜, 贺拴海, 张岗. 双塔钢桁斜拉桥结构强健性计算方法[J]. 交通运输工程学报, 2017, 17(5): 27-38.
引用本文: 郑小博, 赵煜, 贺拴海, 张岗. 双塔钢桁斜拉桥结构强健性计算方法[J]. 交通运输工程学报, 2017, 17(5): 27-38.
ZHENG Xiao-bo, ZHAO Yu, HE Shuan-hai, ZHANG Gang. Calculating method of structural robustness of double-tower cable-stayed bridge with steel truss girder[J]. Journal of Traffic and Transportation Engineering, 2017, 17(5): 27-38.
Citation: ZHENG Xiao-bo, ZHAO Yu, HE Shuan-hai, ZHANG Gang. Calculating method of structural robustness of double-tower cable-stayed bridge with steel truss girder[J]. Journal of Traffic and Transportation Engineering, 2017, 17(5): 27-38.

双塔钢桁斜拉桥结构强健性计算方法

基金项目: 

国家自然科学基金项目 51308056

详细信息
    作者简介:

    郑小博(1986-), 男, 陕西西安人, 长安大学工学博士研究生, 从事桥梁结构研究

    贺拴海(1962-), 男, 陕西洛川人, 长安大学教授, 工学博士

  • 中图分类号: U448.27

Calculating method of structural robustness of double-tower cable-stayed bridge with steel truss girder

More Information
  • 摘要: 为了确保双塔钢桁斜拉桥的结构强健性, 依托新疆果子沟大桥, 基于现场结构试验, 开发了全方位多点温度补偿系统, 测量了特定加载工况下钢桁主梁应变、挠度与斜拉索索力增量, 确定了钢桁主梁与斜拉索重要构件的具体位置; 基于试验结果, 借鉴广义结构刚度理论, 采用桥梁结构有限元模型分析了斜拉桥弦杆与斜拉索的重要性系数, 研究了桥梁最不利破坏模型。研究结果表明: 各工况下钢桁主梁应变实测数据规律性较好, 钢桁主梁应变与挠度的实测值与理论计算值的比值小于1.0, 表明主梁承载能力与抗变形能力符合设计要求, 具有足够的安全储备; 主梁在各工况下的最大挠度均发生在中跨跨中, 达到237mm, 具有较强抗变形能力; 斜拉索索力增量实测值与理论计算值的比值小于1.0, 表明斜拉索具有一定的安全储备; 钢桁主梁控制截面处弦杆与特定斜拉索为重要性系数较高的构件, 斜拉索的重要性系数大于弦杆的重要性系数, 其中弦杆的重要性系数分布集中于主塔附近与中跨跨中; 通过斜拉索重要性系数的分布可知单根斜拉索的破损不会造成整体结构的坍塌, 但多于2根斜拉索失效可能会导致整体结构的连续倒塌; 主跨最长斜拉索和中跨跨中、边跨支座处与靠近主塔处弦杆失效对于整体结构较为不利。

     

  • 图  1  果子沟大桥

    Figure  1.  Guozigou Bridge

    图  2  桥梁有限元分析模型

    Figure  2.  Finite element mode of bridge

    图  3  桥梁测试断面

    Figure  3.  Test sections of bridge

    图  4  试验用加载车辆(单位: cm)

    Figure  4.  Test loading vehicle (unit: cm)

    图  5  试验车辆横桥向布置(单位: cm)

    Figure  5.  Lateral layouts of test vehicles (unit: cm)

    图  6  试验车辆纵桥向布置(单位: m)

    Figure  6.  Longitudinal layout of test vehicles (unit: m)

    图  7  斜拉索索力测试系统

    Figure  7.  Test system of cable tension

    图  8  测试截面弦杆应变测点布置

    Figure  8.  Layout of strain measuring points

    图  9  应变测试

    Figure  9.  Strain test

    图  10  挠度测试断面测点布置

    Figure  10.  Layout of deflection measuring points

    图  11  系统结构

    Figure  11.  Structure of system

    图  12  索力对比

    Figure  12.  Comparison of cable force

    图  13  下弦杆重要性系数

    Figure  13.  Importance factors of lower chords

    图  14  斜拉索重要性系数

    Figure  14.  Important factors of stay cables

    表  1  工况1下边跨主梁截面Ⅰ-Ⅰ应变比较

    Table  1.   Comparison of strains at girder sectionⅠ-Ⅰunder loading case 1

    下载: 导出CSV

    表  2  工况3下主梁截面Ⅱ-Ⅱ应变比较

    Table  2.   Comparison of strains at girder sectionⅡ-Ⅱunder loading case 3

    下载: 导出CSV

    表  3  工况4下主梁截面Ⅲ-Ⅲ应变比较

    Table  3.   Comparison of strains at girder sectionⅢ-Ⅲunder loading case 4

    下载: 导出CSV

    表  4  工况6下主梁截面Ⅳ-Ⅳ应变比较

    Table  4.   Comparison of strains at girder sectionⅣ-Ⅳunder loading case 6

    下载: 导出CSV

    表  5  中载工况下控制截面挠度比较

    Table  5.   Comparison of deflections at control sections under middle loading cases

    下载: 导出CSV

    表  6  偏载工况下控制截面挠度比较

    Table  6.   Comparison of deflections at control sections under biased loading cases

    下载: 导出CSV

    表  7  索力增量比较

    Table  7.   Comparison of cable force increments

    下载: 导出CSV

    表  8  钢桁主梁加载方法

    Table  8.   Loading methods of steel truss girder

    下载: 导出CSV

    表  9  斜拉索加载方法

    Table  9.   Loading methods of stay cables

    下载: 导出CSV
  • [1] 谷音, 范立础, 叶建仁. 基于结构易损性的斜拉桥多灾害安全性能研究[J]. 福州大学学报: 自然科学版, 2010, 38 (3): 401-407. https://www.cnki.com.cn/Article/CJFDTOTAL-FZDZ201003020.htm

    GU Yin, FAN Li-chu, YE Jian-ren. The assessment method of safety performance of cable-stayed bridge under multihazard based on structure vulnerability[J]. Journal of Fuzhou University: Natural Science Edition, 2010, 38 (3): 401-407. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-FZDZ201003020.htm
    [2] ASCE. 2005report card for America's infrastructure[R]. Reston: ASCE, 2005.
    [3] GHOSN M, MOSES F. Redundancy in highway bridge superstructures (report 406)[R]. Washington DC: National Academy Press, 1998.
    [4] LIU W D, GHOSN M, MOSES F. Redundancy in highway bridge substructures (report 458)[R]. Washington DC: National Academy Press, 2001.
    [5] GHOSN M, YANG Jian, BEAL D, et al. Bridge system safety and redundancy[R]. Washington DC: TRB, 2014.
    [6] KUDSI T N, FU C C. Redundancy analysis of existing truss bridges: a system reliability-based approach[C]//IABMAS. IABMAS'02First International Conference Bridge Maintenance, Safety and Management. Stresa: IABMAS, 2002: 1-9.
    [7] GHARAIBEH E S, FRANGOPOL D M, ONOUFRIOU T. Reliability-based importance assessment of structural members with applications to complex structures[J]. Computers and Structures, 2002, 80 (12): 1113-1131. doi: 10.1016/S0045-7949(02)00070-6
    [8] 赵煜, 贺拴海, 宋一凡. 在役索桁组合连续钢桥承载力综合评估方法[J]. 长安大学学报: 自然科学版, 2005, 25 (5): 47-50. doi: 10.3321/j.issn:1671-8879.2005.05.011

    ZHAO Yu, HE Shuan-hai, SONG Yi-fan. Evaluation methodology for existing truss cable composite continuous steel bridge[J]. Journal of Chang'an University: Natural Science Edition, 2005, 25 (5): 47-50. (in Chinese). doi: 10.3321/j.issn:1671-8879.2005.05.011
    [9] ZHU Ben-jin, FRANGOPOL D M. Risk-based approach for optimum maintenance of bridges under traffic and earthquake loads[J]. Journal of Structural Engineering, 2013, 139 (3): 422-434. doi: 10.1061/(ASCE)ST.1943-541X.0000671
    [10] GHOSN M, DUEÑAS-OSORIO L, FRANGOPOL D M, et al. Performance indicators for structural systems and infrastructure networks[J]. Journal of Structural Engineering, 2016, 142 (9): F4016003-1-18. doi: 10.1061/(ASCE)ST.1943-541X.0001542
    [11] 李源, 贺拴海. 基于吊杆损伤失效的飞燕式拱桥鲁棒性研究[J]. 合肥工业大学学报: 自然科学版, 2014, 37 (10): 1254-1258. doi: 10.3969/j.issn.1003-5060.2014.10.020

    LI Yuan, HE Shuan-hai. Research on robustness performance of swallow type arch bridge based on suspender damage[J]. Journal of Hefei University of Technology: Natural Science, 2014, 37 (10): 1254-1258. (in Chinese). doi: 10.3969/j.issn.1003-5060.2014.10.020
    [12] YANG Jian. Structural redundancy and system reliability of highway bridges[D]. New York: City University of New York, 2015.
    [13] MIAO Feng, GHOSN M. Reliability-based progressive collapse analysis of highway bridges[J]. Structural Safety, 2016, 63: 33-46. doi: 10.1016/j.strusafe.2016.05.004
    [14] GHOSN M, FRANGOPOL D M, MCALLISTER T P, et al. Reliability-based performance indicators for structural members[J]. Journal of Structural Engineering, 2016, 142 (9): F4016002-1-13. doi: 10.1061/(ASCE)ST.1943-541X.0001546
    [15] 张岗, 贺拴海, 王翠娟. 焰流效应下混凝土空心薄壁墩火温时变分布[J]. 交通运输工程学报, 2014, 14 (1): 26-34. http://transport.chd.edu.cn/article/id/201401004

    ZHANG Gang, HE Shuan-hai, WANG Cui-juan. Timedependent variation distribution of fire temperature for concrete hollow thin-walled pier affected by flame fluid[J]. Journal of Traffic and Transportation Engineering, 2014, 14 (1): 26-34. (in Chinese). http://transport.chd.edu.cn/article/id/201401004
    [16] 张岗, 朱美春, 贺拴海, 等. 火灾下预应力混凝土T形截面梁破坏模式研究[J]. 中国公路学报, 2017, 30 (2): 77-85. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL201702010.htm

    ZHANG Gang, ZHU Mei-chun, HE Shuan-hai, et al. Failure model analysis of prestressed concrete T girder exposed to fire[J]. China Journal of Highway and Transport, 2017, 30 (2): 77-85. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL201702010.htm
    [17] 赵煜, 周勇军, 周敉, 等. G30线连霍高速公路赛里木湖至果子沟口段果子沟大桥桥梁静动载试验报告[R]. 西安: 长安大学, 2016.

    ZHAO Yu, ZHOU Yong-jun, ZHOU Mi, et al. Static and dynamic load test report on Sailimu Lake to Guozigou Bridge of Guozigou section of G30Lianhuo Expressway[R]. Xi'an: Chang'an University, 2016. (in Chinese).
    [18] 王新敏. 基于ANSYS的舰船设备抗冲击之DDAM研究[J]. 国防交通工程与技术, 2013 (1): 1-5, 59. https://www.cnki.com.cn/Article/CJFDTOTAL-GFJT201301002.htm

    WANG Xin-min. ANSYS-DDAM study for the shock response of shipboard equipments[J]. Traffic Engineering and Technology for National Defense, 2013 (1): 1-5, 59. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-GFJT201301002.htm
    [19] CHEN Chien-Chou, WU Wen-Hwa, LIU Chun-Yan, et al. Diagnosis of instant and long-term damages in cable-stayed bridges based on the variation of cable forces[J]. Structure and Infrastructure Engineering, 2017: 1-15.
    [20] ZHOU Yu-fen, CHEN Su-ren. Framework of nonlinear dynamic simulation of long-span cable-stayed bridge and traffic system subjected to cable-loss incidents[J]. Journal of Structural Engineering, 2016, 142 (3): 04015160-1-17. doi: 10.1061/(ASCE)ST.1943-541X.0001440
    [21] 刘坤. 关头坝大桥应变监测系统研究[D]. 西安: 长安大学, 2013.

    LIU Kun. Researches on the strain monitoring system of Guantouba Bridge[D]. Xi'an: Chang'an University, 2013. (in Chinese).
    [22] HUNLEY C T, HARIK I E. Structural redundancy evaluation of steel tub girder bridges[J]. Journal of Bridge Engineering, 2012, 17 (3): 481-489. doi: 10.1061/(ASCE)BE.1943-5592.0000266
    [23] 叶列平, 林旭川, 曲哲, 等. 基于广义结构刚度的构件重要性评价方法[J]. 建筑科学与工程学报, 2010, 27 (1): 1-6. https://www.cnki.com.cn/Article/CJFDTOTAL-XBJG201001003.htm

    YE Lie-ping, LIN Xu-chuan, QU Zhe, et al. Evaluating method of element importance of structural system based on generalized structural stiffness[J]. Journal of Architecture and Civil Engineering, 2010, 27 (1): 1-6. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-XBJG201001003.htm
    [24] GB 50153—2008, 公路工程结构可靠度设计统一标准[S].

    GB 50153—2008, unified standard for reliability design of engineering structures[S]. (in Chinese).
    [25] ZHOU Yu-fen, CHEN Su-ren. Dynamic simulation of a longspan bridge-traffic system subjected to combined service and extreme loads[J]. Journal of Structural Engineering, 2015, 141 (9): 04014215-1-18.
  • 加载中
图(14) / 表(9)
计量
  • 文章访问数:  305
  • HTML全文浏览量:  155
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-07-21
  • 网络出版日期:  2022-08-11
  • 刊出日期:  2017-10-25

目录

    /

    返回文章
    返回