留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

用矩阵权函数分析基层底部混合型裂缝的应力强度因子

罗睿 黄晓明

罗睿, 黄晓明. 用矩阵权函数分析基层底部混合型裂缝的应力强度因子[J]. 交通运输工程学报, 2002, 2(1): 38-42.
引用本文: 罗睿, 黄晓明. 用矩阵权函数分析基层底部混合型裂缝的应力强度因子[J]. 交通运输工程学报, 2002, 2(1): 38-42.
LUO Rui, HUANG Xiao-ming. Analysis on the stress intensity factor(SIF)for mixed-mode crack atbottom base layer with weight functions expressed with matrix[J]. Journal of Traffic and Transportation Engineering, 2002, 2(1): 38-42.
Citation: LUO Rui, HUANG Xiao-ming. Analysis on the stress intensity factor(SIF)for mixed-mode crack atbottom base layer with weight functions expressed with matrix[J]. Journal of Traffic and Transportation Engineering, 2002, 2(1): 38-42.

用矩阵权函数分析基层底部混合型裂缝的应力强度因子

详细信息
    作者简介:

    罗睿(1973-),男,四川南溪人,东南大学交通学院博士生,从事路面材料研究和路面结构计算

  • 中图分类号: U416.1

Analysis on the stress intensity factor(SIF)for mixed-mode crack atbottom base layer with weight functions expressed with matrix

More Information
    Author Bio:

    LUO Rui(1973-), male, a doctoral student of Southeast University, engaged in research of pavement material and pavement structure

  • 摘要: 由于基层材料的变异性、基层干缩(尤其是水泥基基层)、温度应力、土基压实不够、施工和养护不当,以及混合型荷载等都会在基层形成混合型裂缝,这些裂缝很容易形成反射裂缝,因而分析基层混合型裂缝应力强度因子就非常有必要。根据能量准则、叠加原理、贝蒂互换定理等推导出用矩阵权函数计算混合型应力强度因子的方法。并分析了待定权函数系数的求法,即结合有限元计算混合型裂缝应力强度因子方法求出待定的权函数系数,继而得到了矩阵型权函数。并利用有限元检验得到的权函数,两种不同方法在不同荷载作用下的计算结果吻合得很好,表明该方法可行。并编制了相应的程序来实现上述理论,对研究反射裂缝扩展和工程应用非常有益。

     

  • 图  1  基层底裂缝

    Figure  1.  Bottom crack of base layer

    图  2  裂缝尖端单元

    Figure  2.  Elements of crack tip

    图  3  裂缝尖端面节点

    Figure  3.  Nodes of crack face

    图  4  权函数示意图

    Figure  4.  Weight functions for base’s bottom crack

    表  1  有限元计算的混合型应力强度因子  (MPa·cm1/2

    Table  1.   Mixed-mode SIFs by finite element method

    表  2  混合型权函数系数

    Table  2.   Coefficients of mixed┐mode weight function

    表  3  有限元和权函数方法的应力强度因子计算结果  (MPa·cm1/2

    Table  3.   SIF results by finite element method and weight function method

  • [1] BÜECKNER H F. A novel principle for the computation of stress intensity factors[J]. ZAMM, 1970, 50 (9): 529-546.
    [2] RICE J R. Some remarks on elastic crack-tip stress fields[J]. Int. J. Solids Structure, 1972, 8 (10): 751- 758.
    [3] LUORui, HUANG Xiao-ming, LU Yuan, ZHANG Wang. Research on the influence by base layer to the stress intensity factor of pavement with continual layers[J]. Journal of Southeast University, 2001, 31 (5): 61-64.
    [4] LUO Rui, HUANG Xiao-ming. Research on the method to calculate the stress intensity factor of asphalt pavement's edge crack[J]. Journal of Highway and Transportation Research and Development, 2002, 19(1): 12-15.
    [5] LUO Rui, HUANG Xiao-ming. Calculation on the stress intensity factor for the bottom crack of asphalt pavement's asphalt layer considering partial constraint by weight function[J]. Chinese Journal of Geotechnical Engineering, 2001, 23 (5): 610-614.
    [6] PETROSKI H J, ACHENBACH J D. Computation of the weight function from a stress intensity factor[J]. Engng. Frac. Mech., 1978, 10(2): 257-266. doi: 10.1016/0013-7944(78)90009-7
    [7] WILLIAMS M L. Stress singularities resulting from various boundary conditions in angular corners of plates in extension[J]. J. Appl. Mech., 1952, 19 (4): 526-528. doi: 10.1115/1.4010553
    [8] MANU C. Quadratic isoparametric elements as tran- sition elements[J]. Engng. Frac. Mech., 1986, 24 (4): 509-512. doi: 10.1016/0013-7944(86)90224-9
    [9] CHONG Rhee H. Stress intensity factor evaluation from displacements along arbitrary crack tip radial lines for warped surface flaws[J]. Engng. Frac. Mech., 1989, 32(5): 723-732. doi: 10.1016/0013-7944(89)90168-9
    [10] LESLIEBanks-sills, SHERMAN D. Comparison of methods for calculating stress intensity factors with quarter-point elements[J]. Int. J. Frac. 1986, 32 (2): 127-140. doi: 10.1007/BF00019788
    [11] ZHANG S. FEM analysis on mixed-mode fracture of CSM-GRP[J]. Engng. Frac. Mech., 1986, 23 (3): 521-535. doi: 10.1016/0013-7944(86)90160-8
    [12] CHONG Rhee H, MAMDOUH M Salama. Mixedmode stress intensity factor solutions of a warped surface flaw by three-dimensional finite element analysis[J]. Engng. Frac. Mech., 1987, 28 (2): 203- 209. doi: 10.1016/0013-7944(87)90214-1
  • 加载中
图(4) / 表(3)
计量
  • 文章访问数:  316
  • HTML全文浏览量:  72
  • PDF下载量:  214
  • 被引次数: 0
出版历程
  • 收稿日期:  2001-11-12
  • 刊出日期:  2002-03-25

目录

    /

    返回文章
    返回