-
摘要: 弹性轮对在国外轻轨交通车辆上已使用较为广泛, 实践表明其在减少轮轨噪声、降低轮轨间的动作用力和提高旅客的乘坐舒适度等方面取得了明显的效果, 但在国内还处于起步时期。应用有限元分析软件ANSYS对弹性轮对进行了应力、变形和模态计算分析, 并与刚性轮对的结果相比较, 同时, 研究了橡胶的本构参数对弹性轮对静强度的影响。结果表明: 在静载作用下, 弹性轮对与刚性轮对的最大等效应力均发生在辐板靠近车轴处, 但前者的最大等效应力值大于后者; 橡胶材料常数对弹性轮对的橡胶应力和应变有较大影响, 应对其合理选取; 弹性轮对的低阶固有频率低于刚性轮对, 这会使弹性轮对具有较好的隔振能力Abstract: The resilient wheelset has been widely used in light rail transit abroad. The practices indicate that it is of advantage to reduce wheel/rail noise, dynamic wheel/rail force and improve passenger ride comfort. In this paper, stresses, deformations and modalities of the resilient wheelset are analyzed by using the finite element analysis program ANSYS. The calculative results are compared with the results of the rigid wheelset. The studies on the influence of constitutive parameters of rubber on static strength of the resilient wheelset are also presented. The results indicate that the maximum equivalent stresses of the resilient wheelset and the rigid wheelset appear at the wheel spoke attached to the axle, and the peak value of the resilient wheelset is larger than that of the rigid wheelset. The material parameters of the rubber have large effects on stresses and strains of the rubber. It is necessary to select the optimum parameters. It is also acquired that the low inherent frequencies of the resilient wheelset is less than those of the rigid wheelset, which determines that the resilient wheelset has high efficiency in reducing vibrations.
-
Key words:
- resilient wheelset /
- rubber /
- nonlinear /
- finite element /
- stress /
- modal analysis
-
表 1 压缩剪切型弹性轮对与刚性轮对固有频率及振型
Table 1. Tab.1 The comparison of inherent frequencies and vibration mode shapes of compress-shear resilient wheelset and rigid wheelset
阶数 弹性轮对固有频率/Hz 弹性轮对振型 刚性轮对固有频率/Hz 刚性轮对振型 1 151 车辆绕Z轴成八字型 196 车轮绕Z轴成八字型 2 154 车轮绕Y轴成八字型 206 车轮绕Y轴成八字型 3 155 车轮绕Z轴成平行状 210 车轮绕Z轴成平行状 4 156 车轮绕Y轴成平行状 216 车轮绕Y轴成平行状 5 244 车轮绕X轴向左边突 288 车轮绕X轴旋转 6 245 车轮绕X轴向内突 297 车轮绕X轴旋转 7 289 车轮绕X轴旋转 334 车轮沿X轴向外突 8 299 车轮绕X轴旋转 336 车轮沿X轴向左边突 9 319 车轴绕Z轴一次弯曲 347 车轴绕Z轴一次弯曲 10 340 车轴绕Y轴一次弯曲 357 车轴绕Y轴一次弯曲 11 491 左侧车轮绕Y轴弯扭 534 两侧车轮绕Y轴弯扭 12 496 右侧车轮绕Y轴弯扭 535 两侧车轮绕Y轴弯扭 13 498 左侧车轮绕Z轴弯扭 537 两侧车轮绕Z轴弯扭 14 501 右侧车轮绕Z轴弯扭 540 两侧车轮绕Z轴弯扭 15 641 车轴绕Z轴二次弯曲 642 车轴绕Z轴二次弯曲 16 692 车轴绕Y轴二次弯曲 687 车轴绕Y轴二次弯曲 17 832 车轴绕Z轴一次弯扭 813 车轴绕Z轴一次弯曲 18 850 车轴绕Y轴一次弯扭 829 车轴绕Y轴一次弯曲 19 1088 车轴绕Y轴二次弯扭 1102 车轴绕Y轴二次弯扭 20 1094 车轴绕Z轴二次弯扭 1108 车轴绕Z轴二次弯扭 21 1142 车轴中间鼓起 1153 车轴中间鼓起 22 1264 左车轮绕X, Y, Z轴弯扭 1344 两车轮绕X, Y, Z轴弯扭 23 1270 右车轮绕X, Y, Z轴弯扭 1346 两车轮绕X, Y, Z轴弯扭 24 1274 左车轮绕X, Y, Z轴弯扭 1351 两车轮绕X, Y, Z轴弯扭 25 1281 左车轮绕X, Y, Z轴弯扭 1357 两车轮绕X, Y, Z轴弯扭 -
[1] ZHENG Wei -sheng. Research on model selection of wheels for light rail and metro cars[J]. Foreign Rolling Stock, 2000, 37(2): 17-21. [2] SHI He-ping, GUO Li-jun. Research on the resilient wheel for urban rail vehicle[J]. Urban Public Traffic, 2000, 53(5): 25-27. [3] CUI Yu-fu, ZHENG Mu-qiao. Three dimensional FE analysis of load bearing tire in contact area under rolling condition[J]. Tire Industry, 1998, 18(5): 275-279. [4] JIANG Xuan, ZHENG Mu-qiao. The mechanical property fitting of the road wheel' s rubber flange based on finite element analysis[J]. Journal of Beijing University of Science and Technology, 2000, 20(3): 286-290. [5] Kags H. Stress analysis of a tire under vertical load by a finite element method[J]. Tire Science & Technology, TSTCA, 1997, 5(2): 102-118. [6] Makoto ISH IDA. The effect of resilient wheels on track dynamic[J]. Foreign Rolling Stock, 1998, 35(6): 32-38.