Calculating theory of railway welded turnout based on generalized variational principle
-
摘要: 在继承现有试验成果的基础上, 将广义变分原理应用于铁路无缝道岔结构体系的分析, 提出了一种新的铁路无缝道岔计算理论, 建立了较为完善的计算模型, 在假设钢轨纵向位移函数的基础上, 计算了无缝道岔结构体系各部分的能量, 通过广义变分法建立了结构体系的平衡方程, 编制了计算程序, 分析了固定辙叉无缝道岔钢轨温度力与位移Abstract: Based on existing experimental data and energy variation principle, generalized variational principle is applied to analyze railway welded turnout structures, and a new method of calculating welded turnout structures is presented. It builds a consummate calculation model, sleeper is regarded as finite long beam on continuous elastics base, and the relation between rail forces and sleeper displacements is established by analysis of sleeper forces. On the basis of supposing rail displacements function, energy of welded turnout structures is computed. By means of generalized variational methods the equilibrium equation is derived. A calculation program is worked out, the additional temperature forces and the expanding and contracting displacements of the inner rails are analyzed.
-
表 1 60 kg/m钢轨12号固定辙叉无缝道岔基本轨附加力、基本轨和导轨位移
Table 1. The additional temperature forces and displacements of railway welded turnout rails
Δt/℃ Ptm/kN ΔP/kN ΔP·P/% yj/mm yd/mm Pj/kN 32* 604.04 155.61 25.7 1.79 4.29 135.458 40 752.70 245.92 32.6 3.17 5.67 207.279 50 940.87 314.81 33.4 4.06 6.56 261.150 60 1129.04 385.20 34.1 5.22 8.72 291.498 注: “*”表示该温度间隔铁结构间隙刚好用完的温度; Δt为钢轨温升幅度; Ptm为钢轨基本温度力; ΔP为基本轨最大附加力(在间隔铁处ΔP=P0+Pj); yj为间隔铁处基本轨位移; yd为间隔铁处导轨位移; Pj为间隔铁螺栓承受的剪力。 -
[1] HellingerE. DieAllgemeineAnsatz derMechanil der Kont-inua[M]. Encyclopadie der Mathematischen Wissenschaften, B. 4/4, s. 602 (1914). [2] Reissner E. On a variational theorem in elasticity[J]. Journal of Mathematics and Physics, 1950, 29(2): 90. [3] Washizu K. On the varitional principles of elasticity and plasticity[R]. Aeroelastic and Structures Research Laboratory, Massachusetts Institute of Technology, Technical Report 25-18, 1955. [4] 胡海昌. 弹性力学的变分原理及其应用[M]. 北京: 科学出版社, 1981. [5] 钱伟长. 变分法和有限元(上册)[M]. 北京: 科学出版社, 1980. [6] Pian T H H, Tong P. Finite element methods in continuum mechanics[J]. Advancesin Applied Mechanics, 1972, 12(1): 190. [7] 龙驭球. 广义协调元[J]. 土木工程学报, 1987, 20(1): 1-14. https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC198701000.htmLONG Yu-qiu. The generalized conforming element method [J]. Journal of Civil Engineering, 1987, 20 (1): 1-14. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC198701000.htm [8] 秦荣. 利用加权残数法建立广义变分原理[A]. 工程力学论文集[C]. 北京: 人民交通出版社, 1992. [9] 卢耀荣. 超长无缝线路上道岔纵向力计算[R]. 北京: 铁道部科学研究院, 1995. [10] 范俊杰, 陈岳源. 无缝道岔计算理论与试验分析研究[R]. 北京: 北方交通大学, 1999.