-
摘要: 运用Alliche A和Francois D提出的分析水泥混凝土疲劳损伤的力学模型计算沥青混合料的疲劳性能, 将计算结果与试验结果进行比较发现, 其结果与试验值相差非常大。造成这一差别的原因与模型中参数的取值有关, 更主要的原因是沥青混合料的损伤演变律并不一定遵循简单的直线关系。对原损伤演变律进行了修正, 运用修正的损伤演变律对计算模型进行了推导。经验证, 修正的模型的计算结果与试验结果比较接近, 可用于预测沥青混合料的疲劳性能Abstract: A method that was used to analyze cement concrete fatigue and damage was put forward by A.Alliche and D.Francois. Using this method to calculate asphalt mixtures fatigue life, it is found that there is much differences between its result and testing result, the result is related with the parameter of forecast model, the damage evolvement of asphalt mixtures is different with that of cement concrete. The rule of asphalt mixtures damage evolvement was put forward based on a new method. Its forecast result was compared with testing result.It is shown that this method is scientific, moreover, its prediction is accurate.
-
Key words:
- asphalt mixtures /
- damage mechanics /
- fatigue tests /
- forecast
-
表 1 应用损伤力学方法计算沥青混合料的疲劳寿命
Table 1. Calculation of asphalt mixtures fatigue properties using damage mechanics
变量 Dm ζn N dm/mm dm0/mm 计算方法 在[0, 1]中随机取值 式(10) 式(23) 式(12) 试验 试验 计算结果 0.00 0.50 0 1.21 1.21 0.000025 0.10 0.51 1994 1.28 1.21 0.000025 0.20 0.52 4048 1.36 1.21 0.000025 0.30 0.53 6173 1.46 1.21 0.000025 0.40 0.54 8381 1.57 1.21 0.000025 0.50 0.55 10691 1.71 1.21 0.000025 0.60 0.56 13122 1.88 1.21 0.000025 0.70 0.58 15704 2.10 1.21 0.000025 0.80 0.59 18476 2.38 1.21 0.000025 0.90 0.61 21494 2.79 1.21 0.000025 1.00 0.63 24840 3.40 1.21 0.000025 表 2 用修正的损伤力学模型计算沥青混合料的疲劳寿命
Table 2. Asphalt mixtures fatigue properties of calculation using ameliorated damage model
变量 Dm ζn N dm/mm dm0/mm a 计算方法 在[0, 1]中随机取值 式(25) 式(27) 式(24) 试验 试验 暂定 计算结果 0.00 0.50 0 1.21 1.21 0.000025 0.65 0.10 0.51 2472 1.29 1.21 0.000025 0.65 0.20 0.52 5019 1.38 1.21 0.000025 0.65 0.30 0.53 7656 1.49 1.21 0.000025 0..5 0.40 0.54 10404 1.62 1.21 0.000025 0.65 0.50 0.56 13291 1.79 1.21 0.000025 0.65 0.60 0.57 16352 2.01 1.21 0.000025 0.65 0.70 0.59 19639 2.30 1.21 0.000025 0.65 0.80 0.61 23225 2.71 1.21 0.000025 0.65 0.90 0.64 27222 3.36 1.21 0.000025 0.65 1.00 0.67 31817 4.52 1.21 0.000025 0.65 -
[1] 蔡四维, 蔡敏. 混凝土的损伤断裂[M]. 北京: 人民交通出版社, 1999.163-166. [2] Yoshikawa H, Tanabe T. An analytical study for the tension stiffness of reinforced concrete members on the basis of bond slip mechanism[J]. Trans. of the Japan Concrete Institute, 1986: 423-480. [3] Ingraffea A R, Gerstle W H, Gergely P Saoumav. Fracture mechanics of bond in reinforced concrete[J]. J. of Struct. Eng., 1984, 110(10): 871-889.