-
摘要: 研究了高速交通中由于各种交通瓶颈而导致交通堵塞的过程, 通过与高速空气动力学中的激波问题作比拟, 建立适用于这一过程的交通流模型, 包括完全堵塞和部分堵塞两种状态下的不同模型。依据实际测量数据, 论证了平面交叉口绿灯转红灯时车流堵塞波的推进速度满足正态分布假设, 其拟合优度高于泊松分布假设。建立的完全堵塞状态下的交通流模型揭示, 随着上游来流的平均流量增加, 堵塞波的推进速度呈指数规律上升, 堵塞前后交通状态指数改变值在0.0 2~ 0.30范围内。根据部分堵塞状态下的交通流模型, 又可以得到不同程度堵塞条件下, 堵塞波的推进速度与上游来流流量之间的定量变化规律, 可以作为控制上游来流流量, 以减缓堵塞发展或尽快消除堵塞的计算依据。Abstract: The traffic flow modelling was established by shock wave simulation method. It is showed that a shock wave speed distribution in red light period at a plane intersection satisfies a normal assumption, as well as Poisson assumption. Based on completely jammed model, the wave speed increases as an exponential function of the traffic flow quantity. Traffic behavior parameter value may change 0 02~0 30 across the interrupted surface. The non-completely jammed model can calculate a control traffic quantity at upstream entrance of a bottleneck. 4 tabs, 8 refs.
-
Key words:
- expressway /
- shock wave /
- traffic quantity /
- traffic flow modelling
-
表 1 正态分布的假设检验
Table 1. Normal assumption examination
i xi/m·min-1 频数 Fk(xi) Pk(xi) Fk(xi)-Nk(xi) Fk(xi+1)-Nk(xi) 1 < 7 2 0.0333 0.0586 0.0253 0.0747 2 7~12 6 0.1333 0.1444 0.0110 0.1390 3 12~17 9 0.2833 0.2894 0.0060 0.2106 4 17~22 13 0.5000 0.4802 0.0198 0.2198 5 22~27 12 0.7000 0.6758 0.0242 0.1742 6 27~32 9 0.8500 0.8319 0.0181 0.0848 7 32~37 4 0.9167 0.9289 0.0122 0.0211 8 37~42 2 0.9500 0.9758 0.0258 0.0076 9 42~47 2 0.9833 0.9934 0.0101 0.0066 10 > 47 1 1.0000 0.9986 0.0014 0.0014 表 2 泊松分布的假设检验
Table 2. Poisson assumption examination
i xi/m·min-1 频数 Fk(xi) Pk(xi) Fk(xi)-Pk(xi) Fk(xi+1)-Pk(xi) 1 < 7 2 0.0333 0.0001 0.0332 0.1332 2 7~12 6 0.1333 0.0118 0.1215 0.2715 3 12~17 9 0.2833 0.1449 0.1384 0.3551 4 17~22 13 0.5000 0.5149 0.0149 0.1851 5 22~27 12 0.7000 0.8542 0.1542 0.0042 6 27~32 9 0.8500 0.9778 0.1278 0.0612 7 32~37 4 0.9167 0.9982 0.0816 0.0482 8 37~42 2 0.9500 0.9999 0.0499 0.0166 9 42~47 2 0.9833 1.0000 0.0167 0.0000 10 > 47 1 1.0000 1.0000 0.0000 0.0000 表 3 N*与q1的函数拟合
Table 3. Function relationship between q1and N*
分组i 波速范围/m·min-1 平均波速N*/m·min-1 平均流量q1/veh·min-1 计算流量/veh·min-1 相对误差ε 1 < 4 3.3065 0.5600 0.5476 0.0221 2 4~9 7.1922 1.2292 1.2778 0.0396 3 9~14 11.8466 1.9713 2.0189 0.0241 4 14~19 16.1053 2.5813 2.5889 0.0030 5 19~24 21.1334 3.2397 3.1508 0.0275 6 24~29 26.2518 3.6427 3.6203 0.0061 7 > 29 34.4991 4.1709 4.2051 0.0082 表 4 Δn(q1)函数值
Table 4. Function value of Δn(q1)
q1 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 Δn 0.026 0.052 0.079 0.105 0.132 0.159 0.187 0.215 0.243 0.271 0.299 -
[1] Khibashi Y, Fukui M. The bottleneck effect on high-speed car traffic[J]. J. Phys. Soc. JPN., 2001, 70(5): 1 237-1 239. doi: 10.1143/JPSJ.70.1237 [2] Newell G F. Amoving bottleneck[J]. Transportation Research B, 1998, 32(8): 531-537. doi: 10.1016/S0191-2615(98)00007-1 [3] Jiang R, Wu Q S, Li X B. Capacity drop due to the traverse of pedestrians[J]. Physical Review E, 2002, 65(3): 153-157. [4] WU Zheng, ZENG Li -nong. Numerical model for dynamics simulation of traffic flow[J]. J. Hydrodynamics B, 1994, 6(1): 1-11. [5] 吴正. 高速公路交通事故和干涉车流波的非线性数学模型[J]. 西安公路交通大学学报, 2001, 21(2): 77—80. doi: 10.3321/j.issn:1671-8879.2001.02.023WU Zheng. On the non-linear modelling for expressway incident and intervention traffic flow wave[J]. Journal of Xi'an Highway University, 2001, 21(2): 77-80. (in Chinese) doi: 10.3321/j.issn:1671-8879.2001.02.023 [6] 吴正. 周家嘴路车流起动波速统计研究[J]. 交通运输工程学报, 2002, 2(1): 67-73. http://transport.chd.edu.cn/article/id/200201015WU Zheng. Statistics analysis on vehicle flow starting wave speed of Zhoujiazui road[J]. Journal of Traffic and Transportation Engineering, 2002, 2(1): 67-73. (in Chinese) http://transport.chd.edu.cn/article/id/200201015 [7] 吴正. 低速混合型城市交通的流体力学模型[J]. 力学学报, 1994, 26(2): 149-157. https://www.cnki.com.cn/Article/CJFDTOTAL-LXXB402.002.htmWU Zheng. A fluid dynamics model for the low speed trafficsystem[J]. Journal of ActaMechanicaSinica, 1994, 26(2): 149—157. (inChinese). https://www.cnki.com.cn/Article/CJFDTOTAL-LXXB402.002.htm [8] 苏均和. 概率与数理统计[M]. 上海: 上海财经大学出版社, 1999.
计量
- 文章访问数: 353
- HTML全文浏览量: 99
- PDF下载量: 692
- 被引次数: 0