-
摘要: 根据车轮轨排道碴模型, 得到路基道碴表面荷载, 利用有限元无限元耦合法, 建立了道床路基动力计算模型。结合Newmark积分法逐步求解运动方程, 计算了列车荷载下, 不同道碴厚度与地基刚度下道床路基的振动加速度与动位移。计算结果表明, 道碴厚度对道床路基的动力响应影响显著, 而路基刚度的影响不明显。Abstract: Load acted on the surface of ballast was obtained through the vehicle-rail-ballast model. Dynamic computational model for railway ballast-subgrade was established through a coupling of finite elements and infinite elements method. Under train loads, the vibration acceleration and dynamic displacement in ballast-subgrade, which are of different ballast thickness and subgrade stiffness, were obtained in conjunction with Newmark integration scheme. The computational results show that the ballast thickness has evident impact on the dynamic response of subgrade, but the subgrade's impact is not as evident as the ballast thickness's impact.
-
Key words:
- railway engineering /
- ballast-subgrade /
- dynamic response /
- finite element /
- infinite element
-
表 1 道床路基材料性质参数
Table 1. Parameters of ballast-subgrade
材料类型 弹性模量/MPa 密度/kg·m3 泊松比 道碴 200 2000 0.30 基床 120 1950 0.33 地基 80 1800 0.38 60 1800 0.40 40 1800 0.42 20 1800 0.45 -
[1] 翟婉明. 车辆-轨道耦合动力学[M]. 北京: 中国铁道出版社, 1997. [2] 雷晓燕. 铁路轨道结构数值分析方法[M]. 北京: 中国铁道出版社, 1998. [3] CHEN Shui-sheng, LEI Xiao-yan. Space dynamic response analysis on track structure[J]. Journal of East China Jiaotong University, 1999, 16(1): 6-14. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GHLJ202104003.htm [4] 丁浩江. 弹性和塑性力学的有限元方法[M]. 北京: 机械工业出版社, 1984. [5] DUAN Ke-rang, CAI De-suo. Dam stresses analysis by coupling the method of finite and infinite element[J]. Journal of Wuhan University of Hydr. and Elec. Engineering, 1996, 29(2): 49-53. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-WHDY202006001.htm [6] Bettess P. Infinite element[J]. Internation Journal for Numerical Methods in Engineering, 1977, 11(11): 53-64. https://www.cnki.com.cn/Article/CJFDTOTAL-SLXB202009005.htm [7] Beer G, Meek J L. Infinite domain element[J]. Internation Journal for Numerical Methods in Engineering, 1981, 17(17): 43-52. https://www.cnki.com.cn/Article/CJFDTOTAL-SLXB202009005.htm [8] 朱伯芳. 有限元法原理与应用[M]. 北京: 中国水利水电出版社, 1998. [9] Kerr A D. 轨道力学与轨道工程(中译本)[M]. 北京: 中国铁道出版社, 1988.