-
摘要: 利用LUSAS有限元计算程序对动载荷下铁路整体结构的本征值进行了分析, 得出结构的固有振动频率和时程曲线。参照本征值的分析结果, 结合某铁路干线土质边坡的工程实例, 利用有限差分的数值分析方法, 对列车动载荷下, 对周围土质边坡的扰动情况进行了分析。结果表明, 作用于坡底的铁路载荷对边坡的扰动区域集中在轨道中心3m以内, 随着动载时间的增加, 扰动区域会逐渐扩大。Abstract: The eigenvalue of railway system was analyzed by using LUSAS FEA. According to the analysis results, the eigen- frequency and the response of vertical displacement as well as the principle stress versus dynamic loading time were found. With an in-situ engineering case, a numerical model of soil masses slope under the railway dynamic loading was built. The results show that the disturbing is within 3 m from rail. With time going, the disturbing scope will be expanded.
-
Key words:
- railway engineering /
- dynamic loading /
- soil masses slope /
- disturbing /
- numerical analysis
-
表 1 路面模型中材料的计算参数
Table 1. Material parameters of model
材料名称 计算高度/m 弹性模量/Pa 泊松比 密度/kg·m-3 刚度阻尼系数/% 质量阻尼系数/% 热膨胀系数 轨道 0.14 2.09×1011 0.30 7800 0.03 0.02 1.15×10-5 表 2 模型材料的力学属性
Table 2. Material properties of numerical model
材料名称 剪切模量/Pa 弹性模量/Pa 泊松比 密度/kg·m-3 内聚力/Pa 内摩擦角/ (°) 阻尼系数 本构关系 道床 1.66×109 2.68×109 2 500 0.000 3 弹性体 路基 3.66×107 0.23 1 920 1.43×104 27 0.000 5 M-C 右边坡 4.35×106 0.25 1 850 1.33×103 21 M-C 左边坡 2.67×107 0.23 1 850 1.43×104 23 M-C 左坡护面墙 1.66×109 2.68×109 2 400 弹性体 -
[1] CAO Xin-wen, CAI Ying. A model test study of the dynamic performance of subgrade[J]. Journal of Southwest Jiaotong University, 1996, 31(1): 36-41. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-BDZK202105003.htm [2] Torbjorn E, Martin X D. Adaptive FEA of wave propagation induced by high-speed trains[J]. Computers and Structures, 2001, 79(12): 2 693-2 704. https://www.cnki.com.cn/Article/CJFDTOTAL-JSJA202006041.htm [3] SU Qian, CAI Ying. A special time varying coupling model for dynamic analysis of high speed railway subgrade[J]. Journal of Southwest Jiaotong University, 2001, 36(5): 509-513. (in Chinese) doi: 10.3969/j.issn.0258-2724.2001.05.014 [4] Christopher B, Reinhold H, Stavros A S. Soil-structure interaction in the time domain using halfspace Green's function[J]. Soil Dynamics and Earthquake Engineering, 2002, 22(2): 283-295. [5] Moron R, Santos R C. Modelling of railway bridge-vehicle interaction on high-speed tracks[J]. Computers and Structures, 1997, 63(3): 511-523. https://www.cnki.com.cn/Article/CJFDTOTAL-TLJS202005007.htm [6] SHI-shuenn Chen, Ke-Hung Liao, The simulation of moving load for railway system[J]. Journal of the Chinese Institute of Civil and Hydraulic Engineering(Taiwan), 2000, 12(2): 291-300. https://www.cnki.com.cn/Article/CJFDTOTAL-ZJYX202109018.htm [7] LUSAS. Powerful FE technology for specialist application-theory[R]. LUSAS, 2000. [8] 北京有色设计研究院. 机械设计手册(第三卷)[M]. 北京: 中国化学工业出版社, 1993. [9] ZHANG You-pa, GAO Yong-tao, FANG Zu-lie. Instability mechanism analysis of retaining walls under stochastic vehicles loading condition[J]. Journal of University of Science and Technology Beijing, 2003, 25(1): 18-24. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JSLD202105003.htm [10] ZHANG You-pa, GAO Yong-tao, WU Shun-chuan, et al. Numerical analysis of reinforcement for unstable retaining wall[J]. Journal of Traffic and Transportation Engineering, 2003, 3(4): 17-21. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XDKF202115008.htm [11] LU Xiao-bing, TANG Qing-bing, ZHENG Zhe-min. Numerical analysis for fluidity developing of saturated sandy soil under vertical loading[J]. Acta Mechanica Sinica, 2001, 33(5): 612-620. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-CYXB201503004.htm