留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

变权值加快收敛的路径寻优实时算法

谭德荣 严新平

谭德荣, 严新平. 变权值加快收敛的路径寻优实时算法[J]. 交通运输工程学报, 2004, 4(1): 118-120.
引用本文: 谭德荣, 严新平. 变权值加快收敛的路径寻优实时算法[J]. 交通运输工程学报, 2004, 4(1): 118-120.
TAN De-rong, YAN Xin-ping. Real-time algorithm of finding optimal path with changing weight to speed up convergence[J]. Journal of Traffic and Transportation Engineering, 2004, 4(1): 118-120.
Citation: TAN De-rong, YAN Xin-ping. Real-time algorithm of finding optimal path with changing weight to speed up convergence[J]. Journal of Traffic and Transportation Engineering, 2004, 4(1): 118-120.

变权值加快收敛的路径寻优实时算法

基金项目: 

教育部博士点基金项目 20010497002

详细信息
    作者简介:

    谭德荣(1963-), 男, 山东青岛人, 山东理工大学副教授, 武汉理工大学博士研究生, 从事智能交通系统研究

  • 中图分类号: U491

Real-time algorithm of finding optimal path with changing weight to speed up convergence

More Information
    Author Bio:

    TAN De-rong(1963-), male, associate professor, doctoral student, 86-533-2313644, tdrong163@163.com

  • 摘要: 为获得满意解为目标的最优路径选择问题, 给出了一种加权的LRTA* (LearningReal Time A*) 算法, 通过改变估价函数值更新规则与解时间和解质量的相对折中, 加快算法收敛速度。实例应用表明, 该方法比LRTA*算法更快地收敛于满意解, 是一种求解大城市稠密路网两点间最优路径的有效方法。

     

  • 图  1  两种算法性能描述

    Figure  1.  Characteristic comparison

    表  1  两种算法获得问题解的历时比较

    Table  1.   Time comparison of two solutions

    算法 时间/s LR/m LS/m
    加权LRTA*算法 0.40 4820 5160
    实时LRTA*算法 0.98 4820 4820
    下载: 导出CSV
  • [1] Korf R E. Real-time heuristic search[J]. Artificial Intelligence, 1990, 42(2): 189-211. https://www.cnki.com.cn/Article/CJFDTOTAL-MSSB201903001.htm
    [2] Hamidzadeh B, Shekar S D. A real-time planning algorithm to meet response time constrains in dynamic environments[A]. In Proceedings of the IEEE International Conference on Tools for AI[C]. Boston: IEEE, Piscataway, NJ, USA, 1991.
    [3] Ishida T, Korf R E. Moving target search[A]. In Proceedings of the 12th International Joint Conference on AI[C]. AAAI Menlo Park, USA, 1991.
    [4] Shida I T. Moving target search with intelligence[A]. In Proceedings of the 10th National Conference on AI[C]. AAAI Menlo Park, USA, 1992.
    [5] Chimura F, Tokoro M. The trailblazer search: a new method for searching and capturing moving targets[A]. In Proceedings of the 12th National Conference on AI[C]. AAAI Menlo Park, USA, 1994.
    [6] Hamidzadeh B. Shekar S. Deadline compliance, predictability and on-line optimization in real-time problem solving[A]. In Proceedingsof the International Joint Conference on AI[C]. AAAI Menlo Park, USA, 1995.
    [7] Ishida T, Shimbo M. Improving the learning efficiencies of realtime search[J]. IEEE Transportaiton on Software Engineering, 1996, 13(6): 305-310. https://www.cnki.com.cn/Article/CJFDTOTAL-XTYD202102006.htm
    [8] Shekar S, Hamidzadeh B. Evaluation of real-time search algorithms in dynamic environments[A]. In Proceeding of the IEEE International Conference on Tools for AI[C]. Boston: IEEE, Piscataway, NJ, USA, 1992.
  • 加载中
图(1) / 表(1)
计量
  • 文章访问数:  301
  • HTML全文浏览量:  89
  • PDF下载量:  913
  • 被引次数: 0
出版历程
  • 收稿日期:  2003-04-15
  • 刊出日期:  2004-02-25

目录

    /

    返回文章
    返回