-
摘要: 采用流场数值模拟计算方法, 计算了横风作用时的垂向气动升力系数、气动横向力系数和侧滚力矩系数, 得出各系数与车辆速度和风速之间的变化关系。从动力学角度, 根据力矩平衡原理推导了横风作用时车辆稳定性计算关系式, 根据车辆运行的实际情况得出双层集装箱平车在不同装载情况下的临界倾覆风速和风速之间的关系, 并分析了垂向气动升力、横向气动力和侧滚力矩对车辆倾覆稳定性的影响。结果显示, 横风引起的力中气动横向力占主导作用; 空车比重车的临界倾覆风速低; 重车比空车的临界运行车速低。Abstract: Using numerical computation of fluid flow, the coefficients of vertical force, lateral force and rolling moment caused by cross-wind were calculated, which were related to train speed and wind speed. The equation of train stability was derived with the theory of moment balance from the view of dynamics, and the relation between the train's critical speed of different loading conditions and wind speeds was calculated based on the real running. The effects of vertical force, lateral force and rolling moment on the capsize stability were also analysed. The results show that the vertical force is main factor caused by cross-wind, the critical wind speed of empty car is lower than the speed of loading car, and the critical train speed of loading car is lower than that of empty car.
-
Key words:
- vehicle engineering /
- double container car /
- cross-wind /
- capsize safety /
- moment balance
-
表 1 计算结果
Table 1. Computational results
tg-1 (u/V) / (°) 0 24 44 70 90 CfY 0 0.661 8 1.200 3 1.712 3 1.573 0 CfZ 0 -0.032 4 -0.021 0 0.020 2 0.063 7 CmX 0 0.006 7 0.058 6 0.096 7 0.115 0 表 2 四种工况
Table 2. Four formats
工况 装载状态 簧上总质量/t 工况1 2×40 ft重箱 74.7 工况2 2×24 ft+40 ft重箱 91.7 工况3 2×40 ft空箱 21.7 工况4 53 ft+40 ft空箱 91.7 表 3 不同工况力的计算结果
Table 3. Computational results of forces in defferent condition
参数 工况1 工况2 工况3 工况4 气动升力占垂向力百分率/% 0.9 0.8 2.4 2.4 横向气动力/N 340 572 398 938 103 215 139 070 侧滚弯矩/ (N·m) 27 229 38 271 13 238 -9 359 -
[1] 小野纯朗, 徐涌. 提高列车速度的理论和实践[M]. 北京: 中国铁道出版社, 1992. [2] 王福天. 车辆动力学[M]. 北京: 中国铁道出版社, 1985. [3] 李新立. 货车摆动式转向架及侧架摆动角分析[J]. 铁道车辆, 2002, 40(8): 1-3. https://www.cnki.com.cn/Article/CJFDTOTAL-TDCL200208000.htmLI Xin-li. Swing type freight car bogie and analysis of the swinging angle of the side frame[J]. RailwayVehicle, 2002, 40(8): 1-3. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TDCL200208000.htm [4] 祝志文. 单、双层客车车辆在铁路桥梁上的横向气动力特性[J]. 中南工业大学学报, 2001, 32(4): 410-413. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD200104020.htmZHU Zhi-wen. Aerodynamic characteristics single and double-deck vehicle passing the railway bridge in cross-wind[J]. Journal of Central South University of Technology, 2001, 32(4): 410-413. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD200104020.htm [5] 张健. 国外高速列车最佳头尾部形状的研究[J]. 机车电传动, 2002, 43(4): 16-18. https://www.cnki.com.cn/Article/CJFDTOTAL-JCDC200002004.htmZHANG Jian. Research on optimum nose and tail shapes of foreign high-speed trains[J]. Electric Drive forLocomotive. 2002, 43(4): 16-18. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JCDC200002004.htm [6] Harlow F H, Welch J E. Numerical calculation of time-dependent viscous incompressible flow of fluid with free surface[J]. Physics of Fluids, 1965, 8(12): 2 182-2 189. doi: 10.1063/1.1761178 [7] Thompson J F. Boundary fitted coordinate systems for numerical solution of partial differential equations[J]. Journal of Computational Physics, 1982, 47(1): 101-108.