-
摘要: 研究了在小波多尺度分解情况下, 采用分形维数描述车牌字符特征, 并在分区情况下计算出典型车牌字符的分段分形维数。发现小波变换能获取丰富的车牌字符特征, 采用分段分形维数描述车牌解决了单一维数描述车牌字符时, 有些字符维数相差太小, 导致阈值难以选取的问题。结果表明, 小波分形方法是研究车牌字符识别的有效的新方法。Abstract: Fractal dimension of some typical vehicle license characters were calculated in the condition of three zoning to vehicle license. It is found that prolific property of vehicle license can be obtained through wavelet transform, multi-fractal dimension is a good tool to solve the problem that threshold is hard to decide when too close between some characters using single fractal dimension. Simulation results show that the method is feasible to recognize vehicle license characters.
-
表 1 离散滤波器的离散系数
Table 1. Discrete coefficients of discrete filters
n -3 -2 -1 H 0.125 G K 0.007 813 0.054 685 0.171 875 n 0 1 2 3 H 0.375 0.375 0.125 G -2.0 2.0 K -0.171 875 -0.054 685 -0.007 813 0 表 2 汉字模板分段分形维数
Table 2. Multiscale fractal dimension of Chinese characters template
字符 H1 H2 H3 字符 H1 H2 H3 苏 0.5156 0.5187 0.7461 宁 0.3043 0.5384 0.7196 鄂 0.5667 0.4203 0.9904 津 0.1220 0.7705 0.5984 沪 0.3803 0.6125 0.8465 吉 0.3760 0.6429 0.7718 琼 0.5802 0.4214 0.8012 蒙 0.3808 0.8509 0.5033 辽 0.2916 0.4513 0.7693 黑 0.3420 0.5986 0.6743 桂 0.6349 0.4803 0.7081 海 0.3768 0.5946 0.8951 晋 0.3971 0.7559 0.7399 甘 0.3710 0.8260 0.3833 川 0.3497 0.5321 0.7240 台 0.5480 0.4129 0.7131 浙 0.4647 0.5795 0.7060 皖 0.4483 0.6142 0.7938 滇 0.5225 0.5805 0.6750 疆 0.5287 0.7784 0.5139 赣 0.6531 0.6518 0.5989 粤 0.6221 0.5701 0.7784 表 3 字母模板分段分形维数
Table 3. Multiscale fractal dimension of letter template
字符 H1 H2 H3 字符 H1 H2 H3 A 0.476 3 0.344 8 0.619 0 N 0.782 8 0.016 3 0.748 4 B 0.076 2 0.474 9 0.874 5 O 0.3350 0.4008 0.6075 C 0.382 6 0.297 1 0.573 1 P 0.4090 0.2858 0.5572 D 0.022 8 0.455 9 0.758 9 Q 0.2701 0.5154 0.4281 E 0.404 6 0.291 9 0.747 1 R 0.5131 0.2644 0.5185 F -0.294 7 0.550 7 0.727 3 S 0.3458 0.4496 0.5617 G 0.337 9 0.442 2 0.630 5 T 0.3176 0.4816 0.5748 H 0.302 7 0.394 2 1.002 8 U 0.3847 0.3705 0.5585 I -0.828 5 0.626 9 0.622 3 V 0.4199 0.3976 0.6158 J 0.442 3 0.332 6 0.374 6 W 0.4484 0.4847 0.7105 K 0.040 6 0.499 7 0.676 0 X 0.4233 0.3526 0.5589 L 0.122 3 0.406 7 0.885 2 Y 0.3482 0.4036 0.6003 M 0.314 1 0.291 2 1.110 4 Z 0.3615 0.4625 0.6040 表 4 数字模板分段分形维数
Table 4. Multiscale fractal dimension of number template
字符 H1 H2 H3 字符 H1 H2 H3 0 0.3810 0.2544 0.8158 5 0.3932 0.2626 0.7231 1 0.1368 0.4235 0.5663 6 0.4295 0.5402 0.4121 2 0.4020 0.4878 0.4324 7 0.4743 0.3124 0.6525 3 0.3790 0.3373 0.7071 8 0.4054 0.4491 0.6426 4 0.3595 0.4390 0.4368 9 0.3430 0.6030 0.4103 表 5 易混淆的字符分段分形维数
Table 5. Multiscale fractal dimension of undistinguishable characters template
字符 H1 H2 H3 字符 H1 H2 H3 D 0.0228 0.4559 0.7589 8 0.4054 0.4491 0.6426 O 0.3350 0.4008 0.6075 B 0.0762 0.4749 0.8745 黔 0.5406 0.7208 0.7660 7 0.4743 0.3124 0.6525 陕 0.3983 0.6111 0.8561 1 0.1368 0.4235 0.5663 1 0.1368 0.4235 0.5663 A 0.4763 0.3448 0.6190 I -0.8285 0.6269 0.6223 4 0.3595 0.4390 0.4368 表 6 汉字12维数据信息
Table 6. 12-D data information of Chinese characters template
字符 ha1 ha2 ha3 hh1 hh2 hh3 hv1 hv2 hv3 hd1 hd2 hd3 鲁 0.8398 0.8442 0.7569 0.4681 0.6423 0.9245 0.3288 0.2924 0.6736 0.3560 0.0856 0.5124 川 0.8070 0.8261 0.7747 0.0581 0.3429 0.2841 0.3097 0.5192 0.7392 0.1926 0.1262 -0.0320 浙 0.8463 0.8534 0.7954 0.2826 0.5571 0.7339 0.3419 0.4818 0.7110 0.3149 0.2243 0.3822 滇 0.8465 0.8528 0.7932 0.5379 0.4264 0.8310 0.2411 0.5537 0.5795 0.4134 0.2143 0.6437 赣 0.8153 0.7902 0.7570 0.5975 0.7312 0.5345 0.5290 0.3998 0.4970 0.3826 0.2882 0.6075 辽 0.7630 0.8076 0.7862 0.3509 0.3919 0.5294 0.0774 0.2978 0.6285 0.2929 0.1869 0.3699 桂 0.7764 0.8131 0.7458 0.5457 0.5470 0.5947 0.6035 0.1711 0.6826 0.3332 0.1059 0.4763 鄂 0.7925 0.8415 0.7412 0.4589 0.5822 0.6590 0.4895 0.1480 0.8091 0.4222 0.1941 0.4353 沪 0.7837 0.7871 0.6930 0.0835 0.5466 0.5730 0.3620 0.4554 0.7767 0.2976 0.3233 0.2615 -
[1] 甘龙, 高隽, 梁栋, 等. 基于分形维数的车牌字符识别[J]. 中国公路学报, 2002, 15(4): 75-77. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL200204019.htmGAN Long, GAO Jun, LIANG Dong, et al. Recognition of vehicle licence character based on fractal dimension[J]. China Journal of Highway and Transport, 2002, 15(4): 75-77. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL200204019.htm [2] 金一粟, 袁宝民, 于万波, 等. 基于分形盒子维数的车牌定位方法[J]. 计算机应用研究, 2002, 9(1): 40-42. https://www.cnki.com.cn/Article/CJFDTOTAL-JSYJ200209011.htmJIN Yi-su, YUAN Bao-min, YU Wan-bo, et al. A location method of vehicle-licence-plate based on fractal box dimension[J]. Research on Computer Application, 2002, 9(1): 40-42. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JSYJ200209011.htm [3] 戴青云, 余英林. 一种基于小波与形态学的车牌图像分割方法[J]. 中国图像图形学报, 2000, 5(5): 411-415. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTB200005008.htmDAI Qing-yun, YU Ying-lin. A king of segmentation method of vehicle-licence-plate image based on wavelet and mathematical morphology[J]. Journal of Image and Graphics, 2000, 5(5): 411-415. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTB200005008.htm [4] 沈会良, 李志能. 基于矩和小波变换的数字、字母字符识别研究[J]. 中国图像图形学报, 2000, 5(3): 249-252. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTB200003015.htmSHEN Hui-liang, LI Zhi-neng. A study of number and letter character recognition based on moments and wavelet transform[J]. Journal of Image and Graphics, 2000, 5(3): 249-252. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTB200003015.htm [5] Parisi R. Car plate recognition by neural network and image processing[A]. In Proc. IEEE ISCAS[C]. USA IEEE, 1998. [6] Elliman D G, Lancaster I T. Review of segmentation and contextal analysis techniques for text recognition[J]. Pattern Recognition Society, 1990, 23(4): 337-346. [7] 辛厚文. 分形理论及其应用[M]. 合肥: 中国科学技术大学出版社, 1993. [8] 王晓晖, 朱光喜, 朱耀庭. 图像的一种分形表示法及其应用[J]. 电子学报, 1997, 25(10): 28-31. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXU199710007.htmWANG Xiao-hui, ZHU Guang-xi, ZHU Yao-ting. A representation of fractal property of images and its applications[J]. Acta Electronic Sinica, 1997, 25(10): 28-31. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DZXU199710007.htm [9] Chui C K. An Introduction to Wavelet[M]. Academic Press. US, 1992. [10] 肖旺新, 张雪, 黄卫. 视频交通图像自适应阈值边缘检测[J]. 交通运输工程学报, 2003, 3(4): 104-107. http://transport.chd.edu.cn/article/id/200304020XIAO Wang-xin, ZHANG Xue, HUANG Wei. Adaptive thresholds edge detection of traffic image[J]. Journal of Traffic and Transportation Engineering, 2003, 3(4): 104-107. (in Chinese) http://transport.chd.edu.cn/article/id/200304020 [11] Pentland A P. Fractal-based description of natural scenes[J]. IEEE France Pattern Analysis and Machine Intelligence, 1984, 6(6): 661-671. [12] 程正兴. 小波分析算法与应用[M]. 西安: 西安交通大学出版社, 1998. [13] Barrow H G, Tenenhaum JM. Recovering inatrinaic scene characteristics from images[A]. Computer Vision Systems[C]. New York. Acdemic Press, 1978.