-
摘要: 针对恶劣气候条件下, 出行概率与影响交通出行的气候条件、出行距离和安全设施等因素的内在关系, 对出行概率与出行距离、气候特征等定量变量进行统计回归分析, 并建立了模型。模型的复相关系数为84%, 残差检验表明模型的线性假定成立。综合考虑安全设施对模型的影响, 给出出行概率与各影响因素的综合数学模型。分析结果表明恶劣气候严重程度与交通出行概率成反比关系, 恶劣气候条件下, 出行距离与出行概率成正比关系, 而不同的恶劣气候条件、车辆出行距离、道路安全设施完善程度对高速公路交通出行综合影响幅度在10%~50%之间。Abstract: In order to analyzing the relations of vehicle trip probability with weather condition, trip distance and transportation safety facilities, the paper surveyed the number of vehicle trip at Shang-Kai freeway in severe weather, set up the regress models of vehicle trip probability with weather condition and trip distance. The complex correlativity coefficient of the models is 84%. Based on the influence of transportation safety facilities on the models, the paper summarized a compositive math model of vehicle trip probability. The results indicate that the vehicle trip probability has a direct proportion relation with trip distance and inverse proportion relation with severe weather condition, their influence degrees are 10%~50%.
-
Key words:
- transportation safety /
- adverse weather /
- statistical analysis /
- vehicle trip
-
表 1 车辆出行概率
Table 1. Vehicle trip probability /%
气候类型 距离/km 30 60 90 120 150 180 210 小雪(1) 67.75 69.31 70.15 72.41 75.63 79.19 75.00 小雾(2) 69.02 70.14 71.50 72.39 75.60 79.20 81.00 中雪(3) 52.72 56.19 61.94 67.69 73.44 75.52 84.94 中雾(4) 50.99 56.34 62.06 67.77 73.49 74.63 84.91 冰雪(5) 50.44 55.11 57.51 59.90 61.00 63.50 67.08 大雾(6) 50.63 53.94 56.89 59.84 62.50 65.80 68.69 表 2 车辆出行概率
Table 2. Vehicle trip probability /%
安全措施 距离/km 30 60 90 120 150 180 210 平均 有安全设施 79.7 78.7 78.6 77.7 90.6 92.7 81.5 82.79 无安全设施 55.0 56.5 66.6 47.7 45.3 58.9 44.2 53.46 表 3 模型观察值、预测值及误差
Table 3. Observed values, forecast values and errors of model
数值 距离/km 30 60 90 120 150 180 210 小雪观测值 67.75 69.31 70.15 72.41 75.63 79.19 75.00 小雪预测值 64.70 68.01 71.32 74.62 77.93 81.23 84.54 误差 3.05 1.30 -1.17 -2.21 -2.30 -2.04 -9.54 小雾观测值 69.02 70.14 71.50 72.39 75.60 79.20 81.00 小雾预测值 61.56 64.86 68.17 71.48 74.78 78.09 81.39 误差 7.46 5.28 3.33 0.91 0.82 1.11 -0.39 中雪观测值 52.72 56.19 61.94 67.69 73.44 75.52 84.94 中雪预测值 58.41 61.72 65.02 68.33 71.64 74.94 78.25 误差 -5.69 -5.53 -3.08 -0.64 1.80 0.58 6.69 中雾观测值 50.99 56.34 62.06 67.77 73.49 74.63 84.91 中雾预测值 55.26 58.57 61.88 65.18 68.49 71.79 75.10 误差 -4.27 -2.23 0.18 2.59 5.00 2.84 9.81 冰雪观测值 50.44 55.11 57.51 59.90 61.00 63.50 67.08 冰雪预测值 52.12 55.42 58.73 62.04 65.34 68.65 71.95 误差 -1.68 -0.31 -1.22 -2.14 -4.34 -5.15 -4.87 大雾观测值 50.63 53.94 56.89 59.84 62.50 65.80 68.69 大雾预测值 48.97 52.28 55.58 58.89 62.20 65.50 68.81 误差 1.66 1.66 1.31 0.95 0.30 0.30 -0.12 -
[1] 张军. 道路交通事故经济损失分析评价研究[D]. 南京: 东南大学, 2001. [2] 吴正. 高速交通中堵塞形成阶段的交通流模型[J]. 交通运输工程学报, 2003, 3(2): 61-64. http://transport.chd.edu.cn/article/id/200302010WU Zheng. Traffic flow modelling for jam developing procedure on expressway[J]. Journal of Traffic and Transportation Engineering, 2003, 3(2): 61-64. (in Chinese) http://transport.chd.edu.cn/article/id/200302010 [3] 路峰, 姜文龙, 马社强. 交通事故多发点段排查方法[J]. 长安大学学报(自然科学版), 2003, 23(1): 87-90. https://www.cnki.com.cn/Article/CJFDTOTAL-XAGL200301023.htmLU Feng, JIANG Wen-long, MA She-qiang. Locations identification of hazardous road[J]. Journal of Chang'an University (Natural Science Edition), 2003, 23(1): 87-90. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XAGL200301023.htm [4] 陈建阳. 大雾与高速公路交通事故[J]. 公路交通科技, 1998, 15 (2): 38-40. https://www.cnki.com.cn/Article/CJFDTOTAL-GLJK802.009.htmCHEN Jian-yang. Fog and freeway traffic accidents[J]. Journal of Highway and Transportation Research and Development, 1998, 15(2): 38-40. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GLJK802.009.htm [5] 裴玉龙, 马骥. 道路交通事故道路条件成因分析及预防对策研究[J]. 中国公路学报, 2003, 16(4): 77-82. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL200304017.htmPEI Yu-long, MA Ji. Research on counter measures for road condition causes of traffic accidents[J]. China Journal of Highway and Transport, 2003, 16(4): 77-82. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL200304017.htm [6] 汪荣鑫. 数理统计[M]. 西安: 西安交通大学出版社, 1986.