留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

钢轨磨耗型波磨计算模型与数值方法

金学松 温泽峰 王开云

金学松, 温泽峰, 王开云. 钢轨磨耗型波磨计算模型与数值方法[J]. 交通运输工程学报, 2005, 5(2): 12-18.
引用本文: 金学松, 温泽峰, 王开云. 钢轨磨耗型波磨计算模型与数值方法[J]. 交通运输工程学报, 2005, 5(2): 12-18.
JIN Xue-song, WEN Ze-feng, WANG Kai-yun. Theoretical model and numerical method of rail corrugation[J]. Journal of Traffic and Transportation Engineering, 2005, 5(2): 12-18.
Citation: JIN Xue-song, WEN Ze-feng, WANG Kai-yun. Theoretical model and numerical method of rail corrugation[J]. Journal of Traffic and Transportation Engineering, 2005, 5(2): 12-18.

钢轨磨耗型波磨计算模型与数值方法

基金项目: 

国家自然科学基金重点项目 59935100

教育部博士点基金项目 2002063

全国百篇优秀博士学位论文作者专项基金项目 200248

详细信息
    作者简介:

    金学松(1956-), 男, 江苏扬州人, 西南交通大学教授, 从事轮轨滚动接触力学研究

  • 中图分类号: U213.42

Theoretical model and numerical method of rail corrugation

More Information
  • 摘要: 分析了国内外铁路钢轨波浪形磨损理论模型, 提出了车辆轨道垂、横向耦合动力学、轮轨滚动接触力学和钢轨材料摩擦磨损模型为一体的钢轨磨耗型波浪形磨损计算模型, 发展了相应的数值方法。模型中车辆结构和轨道下部结构被简化成等效的质量、弹簧和阻尼系统, 钢轨用Euler梁代替, 并考虑它的垂向、横向弯曲变形和扭转变形, 利用修改的Kalker三维弹性体非Hertz滚动接触理论和相应的数值方法计算轮轨蠕滑力和摩擦功, 假设材料单位面积磨损量正比于轮轨接触面摩擦功密度。利用该模型和相应的数值方法分析了几个磨耗型波磨情况, 结果表明该模型可以模拟轨道多种缺陷(轨缝、扁疤、凹坑、轨枕间距、随机不平顺等因素)引发的钢轨磨耗型初始波磨和发展规律, 可以模拟由于钢轨在机械加工或打磨过程中形成的初始波磨的演化过程, 可以通过改善轨道特性来消除或减少波磨的发生和发展。

     

  • 图  1  钢轨磨耗型波磨分析模型

    Figure  1.  Calculation model of rail corrugation

    图  2  半个车辆通过曲线

    Figure  2.  Half passenger car passing through a curved track

    图  3  车辆轨道模型

    Figure  3.  Vehicle-track model

    图  4  轮轨法向间隙的变化

    Figure  4.  Description of normal distance variation

    图  5  可能接触区

    Figure  5.  Potential contact area

    图  6  磨耗面计算图解

    Figure  6.  Schematic illustration of wear calculation

    图  7  磨耗量分析图解

    Figure  7.  Analysis illustration of wear quantity

    图  8  初始波磨和新波磨等值线

    Figure  8.  Corrugation contours

    图  9  不均匀磨损等值线

    Figure  9.  Undulatory wear contours

    表  1  车辆轨道结构等效弹簧和阻尼系数[23]

    Table  1.   Structure parameters of vehicle and track

    刚度Kry/(N·m-1) 刚度Krz/(N·m-1) 刚度Ksy/(N·m-1) 刚度Ksz/(N·m-1) 刚度Kw/(N·m-1) 刚度Kb/(N·m-1)
    2.947×107 7.8×107 3.0×107 7.0×107 7.8×107 6.5×107
    阻尼Cry/(Ns·m-1) 阻尼Crz/(Ns·m-1) 阻尼Csy/(Ns·m-1) 阻尼Csz/(Ns·m-1) 阻尼Cw/(Ns·m-1) 阻尼Cb/(Ns·m-1)
    5.0×104 5.0×104 6.0×104 6.0×104 8.0×104 3.1×104
    下载: 导出CSV
  • [1] Mair R I. Track design to prevent long-pitch rail corrugation [J]. Bulletin, 1983, 84(4): 289-300. https://www.cnki.com.cn/Article/CJFDTOTAL-GSYT202003017.htm
    [2] Grassie S L, Gregory R W, Harrison D, et al. The dynamic response of railway track to high frequency vertical/later gitudinal excitation[J]. Journal of Mechanical Engineering Society, 1982, 24(2): 77-102. https://www.cnki.com.cn/Article/CJFDTOTAL-JYGC202105005.htm
    [3] Ripke B, Knothe K. Die unendlich lange schiene auf diskreten schwellen bei harmonischer einzellasterregung[R]. VDI Fortschritt-Berichte, VDI-Verlag, Düsseldorf, 1991.
    [4] Frederick C O. A rail corrugation theory[A]. Proceedings of the Second Conference on the Contact Mechanics and Wear of Rail/Wheel Systems[C]. Kingston: University of Vaterloo Press, 1986.
    [5] Valdivia A. A linear dynamic wear model to explain the initiating mechanism of corrugation[A]. Proceedings of the 10th IAVSD-Symposium[C]. Swets Zeitlinger, Amsterdam/Lisse, 1988.
    [6] Hempelmann K. Shortpitch corrugation on railway rails: a linear model for prediction[R]. VDI Fortschritt-Berichte, VDI-Verlag, Düsseldorf, 1994.
    [7] Hempelmann K, Knothe K. An extended linear model for the prediction of short-pitch corrugation[J]. Wear, 1996, 191(2): 161-169. https://www.cnki.com.cn/Article/CJFDTOTAL-JFXG202011015.htm
    [8] Jin Xue-song, Wang Kai-yun, Wen Ze-feng, et al. Effect of discrete supports of rail on initiation and evolution of rail corrugation[J]. Journal of Mechanical Engineering, 2005, 18(1): 37-41. https://www.cnki.com.cn/Article/CJFDTOTAL-JYGC202101011.htm
    [9] Jin Xue-song, Wen Ze-feng, Wang Kai-yun, et al. Effect of a scratch on curved rail on initiation and evolution of rail corrugation[J]. Tribology International, 2004, 37(5): 385-394. https://www.cnki.com.cn/Article/CJFDTOTAL-MCXX202002011.htm
    [10] Jin Xue-song, Wen Ze-feng, Wang Kai-yun. Effect of track irregularities on initiation and evolution of rail corrugation[J]. Journal of Sound and Vibration, 2005, 285(1): 121-135. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGZY202103006.htm
    [11] JinXuesong, WenZefeng, WangKaiyun, etal. Effectof high frequency vertical vibration of track on formation and evolution of corrugation[J]. Tsinghua Science and Technoloy, 2004, 9(3): 274-280. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGRK202010008.htm
    [12] Clark R A, Foster P. On the mechanics of rail corrugation formation[A]. Proceeding of the 8th IAVSD-Symposium[C]. Cambridge, MA, Swets Zeitlinger(Amsterdam/Lisse), 1984.
    [13] Clark R A, Scott G A, Poole W. Short wave corrugationsan explanation based on stick-slip vibrations[J]. Applied Mechanics Rail Transportation Symposium ASME, 1988, 96(2): 141-148. https://www.cnki.com.cn/Article/CJFDTOTAL-LXXB202101001.htm
    [14] Tassilly E, Vincent N. A linear model for the corrugation of rails[J]. Journal of Sound and Vibration, 1991, 150(1): 25-45. https://www.cnki.com.cn/Article/CJFDTOTAL-GHZJ202101006.htm
    [15] Tassilly E, Vincent N. Rail corrugations: analytical models and field tests[J]. Wear, 1991, 144(2): 163-178. https://www.cnki.com.cn/Article/CJFDTOTAL-HSYJ201911007.htm
    [16] Müller S. A linear wheel-rail model to investigate stability and corrugation on straight track[J]. Wear, 2000, 243(2): 122-132. https://www.cnki.com.cn/Article/CJFDTOTAL-CGGL202008001.htm
    [17] Müller S. A linear wheel-rail model to predict instability and short pitch corrugation[J]. Journal of Sound and Vibration, 1999, 227(5): 899-913. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201810014.htm
    [18] Igeland A. Rail head corrugation growth predictions based non-linear high frequency vehicle/track interaction[J]. Wear, 1997, 213(1): 90-97. https://www.cnki.com.cn/Article/CJFDTOTAL-GGYY201610007.htm
    [19] Ilias H. The influence of rail-pad stiffness on wheelset/track interaction and corrugation growth[J]. Journal of Sound and Vibration, 1999, 227(7): 935-948. https://www.cnki.com.cn/Article/CJFDTOTAL-NYJS202010007.htm
    [20] Nielsen J B. A nonlinear wear model[J]. ASME, Rail Transportation, 1997, 13(1): 7-20. https://www.cnki.com.cn/Article/CJFDTOTAL-JYGC202202004.htm
    [21] Nielsen J B. Evolution of rail corrugation predicted with a nonlinear wear model[J]. Journal of Sound and Vibration, 1999, 227(5): 915-933. https://www.cnki.com.cn/Article/CJFDTOTAL-JGZZ202102032.htm
    [22] Böhmer A, Klimpel T. Plastic deformation of corrugated rails -a numerical approach using material data of rail steel[J]. Wear, 2002, 253(2): 150-161. https://www.cnki.com.cn/Article/CJFDTOTAL-JSSD202105025.htm
    [23] 翟婉明. 车辆-轨道耦合动力学[M]. 北京: 中国铁道出版社, 2002.
    [24] Kalker J J. Three-Dimensional Elastic Bodies in Rolling Contact[M]. Kluwer Academic Publishers, the Netherlands, 1990.
    [25] Bolton P J, Clayton P, McEwan I J. Rollingsliding wear damage in rail and tyre steels[J]. Wear, 1987, 120(2): 145-165. https://www.cnki.com.cn/Article/CJFDTOTAL-MCXX202201009.htm
    [26] Clayton P. Tribological aspects of wheel-rail contact: a review of recent experimental research[J]. Wear, 1996, 191(2): 170-183. https://www.cnki.com.cn/Article/CJFDTOTAL-JTTE202106001.htm
  • 加载中
图(9) / 表(1)
计量
  • 文章访问数:  275
  • HTML全文浏览量:  110
  • PDF下载量:  531
  • 被引次数: 0
出版历程
  • 收稿日期:  2005-04-20
  • 刊出日期:  2005-06-25

目录

    /

    返回文章
    返回