-
摘要: 为了提高货车编组场的安全连挂冲击速度和调车作业的效率, 开发新型铁道车辆缓冲器, 概述了新型铁道车辆液气缓冲器的基本结构及其工作原理, 建立了新型液气缓冲器的列车纵向动力学计算模型, 利用数值模拟方法对液气缓冲器进行了动态特性分析。计算结果表明, 新型液气缓冲器调车冲击时, 在阻抗力不超过2 200 kN时, 容量可以达到160 kJ, 吸收率大于90%, 新型液气缓冲器能使货物列车的紧急制动特性和起动牵引特性满足车辆使用要求, 提高车辆的调车冲击速度, 减缓及耗散列车在运行中车辆间的纵向冲击和振动。Abstract: In order to improve the safety-impacting speed of freight organized into groups' spot and manipulating vehicle efficiency, a new type of hydro-pneumatic buffer for railway vehicle was developed, its basic structure and principle were summarized, a lognitudinal dynamics calculating model of train with the buffers was established, the dynamic characteristic of the buffer was analyzed by numerical simulation method. The calculating result shows that the buffer capability may reach 160 kJ, and its absorptivity may exceed 90% in the condition that the biggest impedance force of the buffer is no more than 2200 kN as manipulating vehicle, the impacting speed of manipulating vehicle is increased, the lognitudinal impulsion and libration between vehicles are decreased and dissipated, the hydro-pneumatic buffer may be adapted to the request of heavy loading and speed increasing train.
-
Key words:
- railway vehicle /
- hydro-pneumatic buffer /
- dynamic characteristic /
- dynamics model
-
表 1 最大车钩力及纵向加速度
Table 1. Most coupler force and longitudinal acceleration
表 2 起动牵引最大车钩力
Table 2. Most coupler force when jump-starting /MN
-
[1] 吴礼本. 国内外货车缓冲器发展趋势简评[J]. 铁道车辆, 1995, 33(6): 29—32. https://www.cnki.com.cn/Article/CJFDTOTAL-TDCL506.006.htmWu Li-ben. Evaluation of development trend about wangon buffer in our country and abroad[J]. Rolling Stock, 1995, 33(6): 29—32. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TDCL506.006.htm [2] 李明, 缪忠海, 王悦明. 我国铁路货车缓冲器的现状及其发展中的几个问题[J]. 中国铁道科学, 1994, 15(3): 16—26. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTK403.001.htmLi Ming, Miao Zhong-hai, Wang Yue-ming. Actuality of wangon buffer and several issue developing[J]. Chinese Railway Science, 1994, 15(3): 16—26. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTK403.001.htm [3] 詹永麒, 孙巍, 张世华. 液压缓冲器动态仿真[J]. 液压气动与密封, 1996, 25(1): 5—8. https://www.cnki.com.cn/Article/CJFDTOTAL-YYQD199601001.htmZhan Yong-qi, Sun Wei, Zhang Shi-hua. Dynamic simulation of hydraulic buffer[J]. Hydraulic Gas Acting and Airproof, 1996, 25(1): 5—8. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YYQD199601001.htm [4] Pflugbeil K. Längsdynamik des eisenbahnzuges bei geteilter zugeinchtung[D]. TH Dresden, 1980. [5] Fa Ringfeder. Kupplung und Puffer[M]. Düsseldorf, 1992. [6] 郝鹏飞, 张锡文, 何枫. 小型液压缓冲器的动态特性分析[J]. 机械工程学报, 2003, 39(3): 155—158. https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB200303035.htmHao Peng-fei, Zhang Xi-wen, He Feng. Study on dynamic characteristics of small hydraulic buffer[J]. Journal of Mechanical Engineering, 2003, 39(3): 155—158. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB200303035.htm [7] Reich O, Grewolls H J. Rechenprogramme zur digitalen simulation längsdynamischer vorgänge bei wagen und zügen der eisenbahn[J]. ZEV-Glas, 1990, 114(3): 80—86. https://www.cnki.com.cn/Article/CJFDTOTAL-DGYJ202001008.htm [8] Reich O, Dominik R. Programme zur si mulation von auflaufvorgängen mit beliebigen puffern[J]. ZEV-Glas, 1992, 116(11/12): 467—472. [9] DuymS, Stiens R, Reybrouck K. Evaluation of shock absorber models[J]. Vehicle System Dynamics, 1997, 27(2): 109—127. doi: 10.1080/00423119708969325 [10] 严隽耄, 翟婉明, 陈清, 等. 重载列车系统动力学[M]. 北京: 中国铁道出版社, 2003. [11] 曾京, 邬平波. 高速列车的稳定性[J]. 交通运输工程学报, 2005, 5(2): 1—4. doi: 10.3321/j.issn:1671-1637.2005.02.001Zeng Jing, Wu Ping-bo. Stability of high-speed train[J]. Journal of Traffic and Transportation Engineering, 2005, 5(2): 1—4. (in Chinese) doi: 10.3321/j.issn:1671-1637.2005.02.001 [12] 周劲松, 任利惠, 杨国桢, 等. 铰接式高速列车运行平稳性[J]. 交通运输工程学报, 2003, 3(3): 54—58. http://transport.chd.edu.cn/article/id/200303012Zhou Jin-song, Ren Li-hui, Yang Guo-zhen, et al. Ride quality of articulated high-speed train[J]. Journal of Traffic and Transportation Engineering, 2003, 3(3): 54—58. (in Chinese) http://transport.chd.edu.cn/article/id/200303012