-
摘要: 为了优化多航段舱位控制, 提高航空客运收益, 将旅客始-终点流按票价由高到低排序, 定义旅客始-终点流为决策变量, 以各始-终点流需求为约束条件, 以航线期望总收益为目标函数, 建立了多航段舱位控制问题的随机规划模型, 设计了模型求解遗传算法。算例分析结果表明, 收益计算结果最大误差为0.34%, 结果稳定, 模型可行。Abstract: In order to optimize multi-leg seat inventory control, improve airline revenue, multi-leg origin-derivation flows in terms of their fares were sorted, which were regarded as decision variables, the sum of every origin-derivation flow revenue expectation was set as object function, a stochastic program model for multi-leg seat inventory control was established, a genetic algorithm to solve the model was set up. The result using genetic algorithm to solve multi-leg seat inventory control problem shows that the computation maximum error of revenue is 0.34%, revenue computation values are stable, the model is feasible.
-
表 1 ODF价格与需求
Table 1. Fares and demands of ODF
-
[1] Brumelle S L, McGill J I. Airline seat allocation with multiple nested fare classes[J]. Operation Research, 1993, 41(1): 127—138. doi: 10.1287/opre.41.1.127 [2] Peter P B. Air travel demand and airline seat inventory management[D]. Massachusetts Institute of Technology, 1987. [3] De Boer S V, Freling R, Piersma N. Mathematical programming for network revenue management revisited[J]. European Journal of Operational Research, 2002, 137(1): 72—92. [4] Talluri K, Van Ryzin G. An analysis of bid-price controls for network revenue management[J]. Management Science, 1998, 44(11): 1 577—1 593. [5] Cianci mino A, Inzerillo G. A mathematical programming approach for the solution of the rail way yield management problem[J]. Transportation Science, 1999, 33(2): 168—181. [6] 朱道立, 武芳, 龚国华. 随机环境中的生产作业计划问题[J]. 管理科学学报, 2001, 4(5): 50—57. https://www.cnki.com.cn/Article/CJFDTOTAL-JCYJ200105006.htmZhu Dao-li, Wu Fang, Gong Guo-hua. Jobshop scheduling in stochastic environment[J]. Journal of Management Sciences in China, 2001, 4(5): 50—57. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JCYJ200105006.htm [7] Kalyan T, Garrett V R. A randomized linear programming method for computing network bid prices[J]. Transportation Science, 1999, 33(2): 207—216. doi: 10.1287/trsc.33.2.207 [8] 杨瑞臣, 周永付, 云庆夏. 寻找车辆最优路径的混合算法[J]. 交通运输工程学报, 2005, 5(1): 102—105. http://transport.chd.edu.cn/article/id/200501024Yang Rui-chen, Zhou Yong-fu, Yun Qing-xia. Hybrid algo-rithm of vehicle's optimal route[J]. Journal of Traffic and Transportation Engineering, 2005, 5(1): 102—105. (in Chi-nese). http://transport.chd.edu.cn/article/id/200501024 [9] 卜雷, 尹传忠, 蒲云. 优化普零货物拼箱配装的遗传算法[J]. 交通运输工程学报, 2004, 4(4): 84—87. http://transport.chd.edu.cn/article/id/200404021Bu Lei, Yin Chuan-zhong, Pu Yun. Genetic algorithmfor optimal arrangement of general piece goods[J]. Journal of Traffic and Transportation Engineering, 2004, 4(4): 84—87. (in Chi-nese). http://transport.chd.edu.cn/article/id/200404021 [10] 徐肖豪, 姚源. 遗传算法在终端区飞机排序中的应用[J]. 交通运输工程学报, 2004, 4(3): 121—126. http://transport.chd.edu.cn/article/id/200403029Xu Xiao-hao, Yao Yuan. Application of genetic algorithm to aircraft sequencing interminal area[J]. Journal of Traffic and Transportation Engineering, 2004, 4(3): 121—126. (in Chi-nese). http://transport.chd.edu.cn/article/id/200403029 [11] 宋厚冰, 蔡远利. 带时间窗的车辆路径混合遗传算法[J]. 交通运输工程学报, 2003, 3(4): 112—115. http://transport.chd.edu.cn/article/id/200304026Song Hou-bing, Cai Yuan-li. Hybrid genetic algorithmof vehicle routing with ti me windows[J]. Journal of Traffic and Transportation Engineering, 2003, 3(4): 112—115. (in Chi-nese). http://transport.chd.edu.cn/article/id/200304026 [12] 刘宝碇, 赵瑞, 王纲. 不确定规划及应用[M]. 北京: 清华大学出版社, 2003. [13] 王小平, 曹立明. 遗传算法[M]. 西安: 西安交通大学出版社, 2002.