-
摘要: 建立了非对称车辆/轨道耦合动力学模型, 分析轨道扣件失效对车辆动态脱轨的影响, 考虑离散轨枕支承对车辆/轨道耦合作用的影响, 通过假设轨道系统刚度沿纵向分布发生突变来模拟扣件组失效状态, 推导了考虑钢轨横向和垂向以及扭转运动的轮轨滚动接触蠕滑率计算公式, 利用Hertz法向接触理论和沈氏蠕滑理论计算轮轨法向力及轮轨滚动接触蠕滑力, 采用新型显式积分法求解车辆/轨道耦合动力学系统运动方程, 通过数值分析计算, 得到轮轨横垂向力之比、轮重减载率、脱轨危险状态的持续时间和轮对踏面上轮轨接触点位置的变化。连续5个钢轨扣件不同程度失效对列车动态脱轨的影响的数值模拟结果表明, 如果失效因子从0.8增大到1.0, 即钢轨扣件经历从接近完全松脱到完全松脱, 钢轨扣件失效对列车动态脱轨影响呈指数规律。Abstract: In order to investigate the effect of disabled fastener system on railway vehicle derailment, a non-symmetrical vehicle-track coupling dynamics model was established.The abrupt change of track stiffness along the track was assumed to simulate the failure situation of rail fastener system.The effect of discrete sleeper support on the coupling dynamics of vehicle and track was taken into consideration.The creepage formulas of wheel/rail rolling contact were deduced, in which the lateral, vertical and torsional motions of rail were taken into account, the normal forces of wheel/rail were calculated by Hertzian contact theory, the creep forces of wheel/rail rolling contact were decided by the nonlinear creep theory of Shen.The motion equations of vehicle/track coupling system were solved with new explicit integration method.The effect of five seriate fasteners' system in different failure situations on railway vehicle derailment was analyzed and evaluated.The ratio of lateral force and vertical force on wheel and rail, wheel load reduction ratio, vehicle derailment time and the variations of contact points on wheel treads were computed.Numerical computation result indicates that when the failure index increases from 0.8 to 1.0, that is to say, rail fasteners experience a process from almost looseness to complete looseness, the influence of rail fastener failure on vehicle dynamic derailment shows an exponential rule.
-
Key words:
- railway engineering /
- railway vehicle /
- track /
- dynamic derailment /
- vehicle/track coupling dynamics /
- failure
-
表 1 车辆自由度
Table 1. Freedom Degrees of Vehicle
车辆部件 运动类型 横向 垂向 侧滚 点头 摇头 一位轮对 Yw1 Zw1 φw1 βw1 Ψw1 二位轮对 Yw2 Zw2 φw2 βw2 Ψw2 转向架 Yt Zt φt βt Ψt 车体 Yc Zc φc - - -
[1] MIYAMOTO M. Mechanism of Derailment Phenomena of Railway Vehicle[J]. QR of RTRI, 1996, 37 (1): 147-155. [2] ELKINS J A, WU H. Angle of Attack and Distance-Based Criteria for Flange Climb Derailment[J]. Vehicle System Dynamics Supplement, 1999, 33 (2): 293-305. [3] 杨春雷, 翟婉明. 车辆动力学仿真中评判脱轨的直接方法[J]. 交通运输工程学报, 2002, 2 (3): 23-26. doi: 10.3321/j.issn:1671-1637.2002.03.005YANG Chun-lei, ZHAI Wan-ming. Direct Method for Evaluation of Wheel Derailment in Simulation of Railway Vehicle Dynamics[J]. Journal of Traffic and Transportation Engineering, 2002, 2 (3): 23-26. (in Chinese) doi: 10.3321/j.issn:1671-1637.2002.03.005 [4] KALMEL A, SWEET L M. Wheelset Mechanics During Wheel Climb Derailment[J]. Transactions of ASME, 1984, 51 (5): 680-686. [5] 邬平波, 王勇. 铁路货车脱轨安全性研究[J]. 交通运输工程学报, 2001, 1 (2): 18-20. doi: 10.3321/j.issn:1671-1637.2001.02.005WU Ping-bo, WANG Yong. Derailment Safety of Railway Freight Cars[J]. Journal of Traffic and Transportation Engineering, 2001, 1 (2): 18-20. (in Chinese) doi: 10.3321/j.issn:1671-1637.2001.02.005 [6] MIYAMOTO T, ISHIDA H, MATSUO M. Running Safety of Vehicle as Earthquake Occurs[J]. QR of RTRI, 1997, 38 (2): 117-122. [7] 曾庆元, 向俊, 娄平. 突破列车脱轨难题的能量随机分析道路[J]. 中国工程科学, 2002, 4 (12): 9-20. https://www.cnki.com.cn/Article/CJFDTOTAL-GCKX200212002.htmZENG Qing-yuan, XIANG Jun, LOU Ping. A Break through in Solving the Problem of Train Derailment—the Approach of Random Energy Analysis[J]. Engineering Science, 2002, 4 (12): 9-20. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GCKX200212002.htm [8] JIN X, WU P, WEN Z. Effects of Structure Elastic Deformations of Wheelset and Track on Creep Forces of Wheel/Rail in Rolling Contact[J]. Wear, 2002, 253 (2): 247-256. [9] ZHAI W M, CAI C B, GUO S Z. Coupling Model of Vertical and Lateral Vehicle/Track Interactions[J]. Vehicle System Dynamics, 1996, 26 (1): 61-79. [10] 周进雄, 刘增杰, 赵国堂. 直线段货物列车脱轨原因的仿真研究[J]. 铁道学报, 2000, 22 (Sup): 15-19.ZHOU Jin-xiong, LIU Zeng-jie, ZHAO Guo-tang. Computer Simulation Study on the Mechanism of Derailment of Freight Car on Tangent Track[J]. Journal of the China Railway Society, 2000, 22 (Sup): 15-19. (in Chinese) [11] ZHAI W M. Two Simple Fast Integration Methods for Large-Scale Dynamic Problemin Engineering[J]. International Journal for Numerical Methods in Engineering, 1996, 39 (24): 4 199-4 214. [12] 金学松, 刘启跃. 轮轨摩擦学[M]. 北京: 中国铁道出版社, 2004. [13] 翟婉明. 车辆-轨道耦合动力学[M]. 北京: 中国铁道出版社, 2002.