-
摘要: 为了精确分析车辆部件的撞击过程, 采用变模板匹配技术, 对撞击标识点进行特征识别, 在对搜索区域进行运动方向和运动速度预测的基础上, 提出了列车部件撞击序列图像运动分析方法。该方法不仅能显示动态变形过程及最后的残余变形, 还能对特定目标或通过鼠标动态选择的目标进行标识跟踪, 并计算出目标的位移、速度及加速度, 然后以曲线、图表、数据等形式输出。对铝合金圆管试件的撞击序列图像的分析表明铝合金圆管的变形是从冲击端开始有序向约束端纵向进行, 共形成七个皱褶, 俯视图呈六边形, 最大压缩量为230.9 mm, 整个塑性变形过程持续64 ms, 表明铝合金结构部件具备良好的塑性流动性, 是比较好的车辆用吸能部件, 说明该测试方法可行。Abstract: In order to analyze the crash process of vehicle component, a motion analysis method of sequence images of train component crash was developed on the basis of the characteristic recognition of crash mark point in matching course and the prognostication of motion orientation and motion velocity in searched area by alterable template matching technique, the dynamic deformation process and final remain deformation could be showed, the special marked objects or dynamically selected objects by mouse could be recognized and tracked, and their displacements, velocities and accelerations could be worked out, which were exported by curves, tables and data.Test result shows that the deformation of aluminum alloy circle pipe part is processed in lengthways order from impact end to restraint end, all seven corrugations are shaped and its planform assumes hexagon, its max compressed length is 230.9 mm, the course of plastic deformation takes 64 ms, which indicates that the aluminum alloy component has good plastic fluidity, is fine energy-absorbed component of car-body, the analysis method is feasible.
-
表 1 铝合金圆管试件的变形规律
Table 1. Deformation Law of Aluminum Alloy Circle Pipe
时间/ms 变形规律 变形长度/mm 45 试件开始与撞击墙接触 0 51 6 ms, 试件开始产生第1个皱褶 14.7 54 9 ms, 试件开始产生第2个皱褶 29.7 60 15 ms, 试件开始产生第3个皱褶 76.7 66 21 ms, 试件开始产生第4个皱褶 122.6 75 30 ms, 试件开始产生第5个皱褶 150.9 82 37 ms, 试件开始产生第6个皱褶 202.8 103 58 ms, 试件开始产生第7个皱褶 230.8 109 64 ms, 试件开始与撞击墙脱离 230.9 -
[1] 黄世霖, 张金换. 汽车碰撞与安全[M]. 北京: 清华大学出版社, 2000. [2] 朱西产, 张金换. 多媒体计算机序列图像运动分析系统的研究[J]. 汽车工程, 1996, 18 (1): 7-13. https://www.cnki.com.cn/Article/CJFDTOTAL-QCGC199601001.htmZHU Xi-chan, ZHANG Jin-huan. The Research of Multi media Computer Based Sequence Image Motion Analysis System[J]. Automotive Engineering, 1996, 18 (1): 7-13. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-QCGC199601001.htm [3] 易国华. 灰度图像序列中运动目标的提取方法[J]. 江汉石油学院学报, 2002, 24 (2): 101-102. https://www.cnki.com.cn/Article/CJFDTOTAL-JHSX200202042.htmYI Guo-hua. Drawing Moving Objects from Gray Scale Image Sequences[J]. Journal of Jianghan Petrleum Institute, 2002, 24 (2): 101-102. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JHSX200202042.htm [4] 杨枝灵, 王开. Visual C++数字图像获取、处理及实践应用[M]. 北京: 人民邮电出版社, 2003. [5] 傅德胜, 刘珍丽. 印鉴图像配准与特征提取[J]. 模式识别与人工智能, 2002, 15 (3): 382-384. doi: 10.3969/j.issn.1003-6059.2002.03.027FU De-sheng, LIU Zhen-li. Registration and Feature Extraction of the Seal Imprint Image[J]. Pattern Recognition and Artificial Intelligence, 2002, 15 (3): 382-384. (in Chinese) doi: 10.3969/j.issn.1003-6059.2002.03.027 [6] 张宏林. 数字图像模式识别技术及工程实践[M]. 北京: 人民邮电出版社, 2003. [7] 王岩松, 阮秋琦. 一种基于互相关的图像定位匹配算法研究及应用[J]. 北方交通大学学报, 2002, 26 (2): 20-24. https://www.cnki.com.cn/Article/CJFDTOTAL-BFJT200202004.htmWANG Yan-song, RUAN Qiu-qi. Application of Image Orientation and Matching Algorithm Based on Correlative Matching Method[J]. Journal of Northern Jiaotong University, 2002, 26 (2): 20-24. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-BFJT200202004.htm [8] 董慧颖. 基于模板的快速目标搜索算法研究[J]. 控制工程, 2002, 9 (3): 87-89. https://www.cnki.com.cn/Article/CJFDTOTAL-JZDF200203029.htmDONG Hui-ying. Research of Fast Search Algorithm for Object Region[J]. Control Engineering of China, 2002, 9 (3): 87-89. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JZDF200203029.htm