-
摘要: 为了准确计算洛河特大桥的地震反应, 基于大跨径桥梁地震反应分析方法, 建立了考虑桩-土相互作用的全桩模型, 将波速大于500 m.s-1处的桩截去, 并考虑桩-土相互作用的截桩模型与考虑各桥墩处场地土不同所产生的多点激励以及地震波有限波速传播所引起行波效应的大质量模型, 采用大型通用有限元程序ANSYS进行桥梁三维地震动态时程分析。结果表明, 高墩的位移响应与轴力大; 墩越矮, 横桥向剪力、顺桥向剪力以及顺桥向弯矩越大; 截桩模型与全桩模型的位移响应在横桥向与顺桥向的最大偏差分别为7.4%与8.2%, 故截桩模型可用作长桩桥梁时程的简化分析; 大质量模型受质量块的大小以及桥墩高差的影响较大, 跨径小于160 m以及桥长小于660 m的连续刚构桥对行波效应不敏感, 因此, 在高墩大跨径连续刚构桥抗震设计时, 应考虑桩-土相互作用, 并加强高墩的延性设计与矮墩的截面抗力设计。Abstract: In order to calculate the seismic response of Luohe bridge exactly, three computation models were put forward based on long-span bridge seismic analysis method.In whole-pile model, pile-soil interaction was considered.In incomplete-pile model, longer piles in soil were cut when their wave speeds were greater than 500 m·s-1, pile-soil interaction was considered.In big mass model, the multi-support excitations of different site soils and the traveling-wave effect resulted from limit transmitting earthquake wave were analyzed.Bridge 3-D earthquake wave was studied by finite element program ANSYS.The result shows that the displacement and axial force of longer pier are greater, the shorter pier is, the bigger its transverse and lognitudinal shearing forces and its flexural torque in lognitudinal are, the most deviations of displacement responses for incomplete-pier model and whole-pier model are 7.4% and 8.2% respectively, therefore, incomplete-pile model is adaptively used for the simplified analysis of bridge response when its piles are too long, big-mass model is greatly affected by the capacity of mass block and the length of bridge pier, the bridge is insensitive to traveling-wave effect when its span is below 160 m and its length is below 660 m, shorter pier sectional resisting force design and longer pier ductility design must be strengthened in the seismic design of continuous rigid-framed bridge with high piers and long spans based on considering pile-soil interaction.
-
表 1 横桥向位移响应
Table 1. Peak Responses of Transverse Displacements
墩号 模型1 模型2 模型3 多点激励 行波效应 11# 4.87 4.76 5.68 5.80 12# 15.11 13.99 17.31 18.01 13# 14.12 13.98 18.48 18.71 14# 2.72 2.16 3.32 3.51 表 2 顺桥向位移响应
Table 2. Peak Responses of Longitudinal Displacements
墩号 模型1 模型2 模型3 多点激励 行波效应 11# 5.15 4.73 6.01 6.93 12# 5.30 4.91 21.78 21.79 13# 5.20 4.83 21.92 22.32 14# 4.97 4.62 5.70 6.81 表 3 超越概率为2%的内力峰值响应
Table 3. Peak Responses of Internal Forces with 2% Probability
墩号 墩底 墩顶 轴力/103 kN 顺桥向剪力/103 kN 横桥向剪力/103 kN 顺桥向弯矩/ (103 kN·m) 横桥向弯矩/ (103 kN·m) 轴力/103 kN 顺桥向剪力/103 kN 横桥向剪力/103 kN 顺桥向弯矩/ (103 kN·m) 横桥向弯矩/ (103 kN·m) 11# 1.05 1.89 5.39 59.61 158.20 0.71 1.74 3.75 58.66 143.40 12# 12.50 1.46 1.75 31.78 90.79 12.02 0.95 1.18 22.11 86.53 13# 10.44 1.18 1.68 27.59 72.86 9.85 0.66 0.81 16.68 66.54 14# 1.11 4.43 3.69 102.30 78.16 0.91 4.32 2.92 101.00 74.27 表 4 超越概率为10%的内力峰值响应
Table 4. Peak Responses of Internal Forces with 10% Probability
墩号 墩底 墩顶 轴力/103 kN 顺桥向剪力/103 kN 横桥向剪力/103 kN 顺桥向弯矩/ (103 kN·m) 横桥向弯矩/ (103 kN·m) 轴力/103 kN 顺桥向剪力/103 kN 横桥向剪力/103 kN 顺桥向弯矩/ (103 kN·m) 横桥向弯矩/ (103 kN·m) 11# 0.83 1.25 2.53 39.04 70.65 0.54 1.09 1.59 37.55 61.90 12# 9.74 1.04 0.96 23.82 47.85 9.62 0.68 0.75 17.24 41.99 13# 8.18 0.88 0.88 21.21 49.13 7.76 0.38 0.52 11.96 37.89 14# 0.74 3.50 2.23 80.86 46.54 0.58 3.43 1.63 80.24 43.38 -
[1] JTJ 004-89, 公路工程抗震设计规范[S]. [2] 范立础. 桥梁抗震[M]. 上海: 同济大学出版社, 1997. [3] 范立础, 胡世德, 叶爱君. 大跨度桥梁抗震设计[M]. 北京: 人民交通出版社, 2001. [4] 胡世德, 苏虹, 王君杰. 钢管混凝土拱桥的三维弹塑性地震反应理论分析[J]. 中国公路学报, 2004, 17 (1): 57-61. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL200401013.htmHU Shi-de, SU Hong, WANG Jun-jie. Three Dimensional Elastic-Plastic Seismic Response Analysis of CFST Bridge[J]. China Journal of Highway and Transport, 2004, 17 (1): 57-61. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL200401013.htm [5] 赵伟封, 马保林, 陈偕民, 等. 薄壁特高墩预应力混凝土连续刚构桥的空间稳定性[J]. 长安大学学报: 自然科学版, 2004, 24 (4): 51-54. https://www.cnki.com.cn/Article/CJFDTOTAL-XAGL200404012.htmZHAO Wei-feng, MA Bao-lin, CHEN Xie-min, et al. Space Stability of Prestressed Concrete Continuous Rigid Frame Bridge with Tall Pier and Thin Wall[J]. Journal of Chang'an University: Natural Science Edition, 2004, 24 (4): 51-54. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XAGL200404012.htm [6] 景宏君, 张斌. 黄土路基强度规律[J]. 交通运输工程学报, 2004, 4 (2): 14-18. http://transport.chd.edu.cn/article/id/200402004JI NG Hong-jun, ZHANG Bin. Loess Subgrade Strength Law[J]. Journal of Traffic and Transportation Engineering, 2004, 4 (2): 14-18. (in Chinese) http://transport.chd.edu.cn/article/id/200402004 [7] 孙利民, 张晨南, 潘龙, 等. 桥梁桩土相互作用的集中质量模型及参数确定[J]. 同济大学学报, 2002, 30 (4): 409-415. doi: 10.3321/j.issn:0253-374X.2002.04.006SUN Li-min, ZHANG Chen-nan, PAN Long, et al. Lumpedmass Model and Its Parameters for Dynamic Analysis of Bridge Pier-Pile-Soil System[J]. Journal of Tongji University, 2002, 30 (4): 409-415. (in Chinese) doi: 10.3321/j.issn:0253-374X.2002.04.006 [8] 王凤霞, 何政, 欧进萍. 桩-土-结构动力相互作用的线弹性地震反应分析[J]. 世界地震工程, 2003, 19 (2): 58-66. https://www.cnki.com.cn/Article/CJFDTOTAL-SJDC200302010.htmWANG Feng-xia, HE Zheng, OU Jin-ping. The Elastic Seismic Response Analysis of Pile-Soil-Structure Interaction System[J]. World Earthquake Engineering, 2003, 19 (2): 58-66. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SJDC200302010.htm [9] 沈聚敏, 周锡元, 高小旺, 等. 抗震工程学[M]. 北京: 中国建筑工业出版社, 2000. [10] 郑史雄, 奚绍中, 杨建中. 大跨度刚构桥的地震反应分析[J]. 西南交通大学学报, 1997, 32 (6): 586-592. https://www.cnki.com.cn/Article/CJFDTOTAL-XNJT706.002.htmZHENG Shi-xiong, XI Shao-zhong, YANG Jian-zhong. Seismic Response Analysis of Long Span Rigid Frame Bridges[J]. Journal of Southwest Jiaotong University, 1997, 32 (6): 586-592. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XNJT706.002.htm [11] 李忠献, 史志利. 行波激励下大跨度连续刚构桥的地震反应分析[J]. 地震工程与工程振动, 2003, 23 (2): 68-76. https://www.cnki.com.cn/Article/CJFDTOTAL-DGGC200302011.htmLI Zhong-xian, SHI Zhi-li. Seismic Response Analysis for Long-Span Continuous Rigid-Framed Bridges Under Excitation of Traveling Waves[J]. Earthquake Engineering and Engineering Vibration, 2003, 23 (2): 68-76. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DGGC200302011.htm