-
摘要: 为了利用摄影测量技术提高交通事故数据采集的效率, 分析了交通事故与相机标定方法的特点, 提出了交通事故现场摄影测量的扩展两步相机标定方法。在扩展两步标定方法中, 首先对相机进行线性标定, 然后进行非线性修正, 最后进行图像校正, 并提出了完整的标定步骤和程序, 进行了相机标定实验。扩展方法标定的结果与线性标定结果相比, 最大绝对误差和相对误差分别为10.9和1.7%, 最小绝对误差和相对误差分别为4.1和1.0%, 表明扩展两步相机标定方法能够显著提高相机标定精度, 抗噪性能稳定。Abstract: In order to improve the data collection efficiency of traffic accidents, the properties of traffic accidents and camera calibrated methods were analyzed, a extended-two-step camera calibrated method applied in traffic accident scene measurement was put forward. In the method, camera was calibrated according to linear model, then its nonlinear parameters were modified based on considering lens aberration, at last image was emendated according to new parameters, full camera calibrated steps and procedure were put forward, and an experiment of accident scene photogrammetry was done. The calibration results of the extended method and linear method show that the maximum values of absolute errors and relative errors are respectively 10.9 and 1.7%, and the least values of them reach respectively 4.1 and 1.0%. Obviously, the extended method has high precision and stability.
-
表 1 参数标定和误差分析
Table 1. Parameter calibrating and error analyzing
项目 αx αy u0 v0 线性标定 857.8 869.1 355.6 375.3 非线性优化 868.7 878.3 361.5 379.4 绝对误差 10.9 9.2 5.9 4.1 相对误差/% 1.3 1.0 1.7 1.1 -
[1] 乔向明, 徐安, 舒伟. 中国道路交通事故变化趋势预测[J]. 长安大学学报: 自然科学版, 2004, 24(6): 64-66. doi: 10.3321/j.issn:1671-8879.2004.06.016Qiao Xiang-ming, Xu An, Shu Wei. Developing tendency forecast of road traffic accident in China[J]. Journal of Chang an University: Natural Science Edition, 2004, 24(6): 64-66. (in Chinese) doi: 10.3321/j.issn:1671-8879.2004.06.016 [2] 王丰元, 宇仁德, 杜守旭. 道路交通事故现场摄影测量原理与模型试验[J]. 中国公路学报, 2001, 14(1): 100-103. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL200101022.htmWang Feng-yuan, Yu Ren-de, Du Shou-xu. Photogrammetric principle and model test for road traffic accident scene measurement[J]. China Journal of Highway and Transport, 2001, 14(1): 100-103. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL200101022.htm [3] Zhang Zheng-you. Aflexible newtechnique for camera cali-bration[J]. IEEE Transaction on Pattern Analysis and Machine Intelligence, 2000, 22(11): 1330-1334. doi: 10.1109/34.888718 [4] Lenz R K, Tsai R Y. Techniques for calibration of the scale factor andimage center for high accuracy 3-D machine vision metrology[J]. IEEE Transaction on Pattern Analysis and Machine Intelligence, 1988, 10(5): 713-720. doi: 10.1109/34.6781 [5] Cumani A, Guiducci A. Anewcamera calibration method for high accuracy non-contact metrology[J]. Pattern Recognition Letters, 1993, 14(5): 415-419. doi: 10.1016/0167-8655(93)90120-3 [6] Tsai R Y. A versatile camera calibration technique for high-accuracy 3D machine vision metrology using off-the-shelf TV cameras and lenses[J]. IEEE Journal of Robotics and Automation, 1987, 3(4): 323-344. doi: 10.1109/JRA.1987.1087109 [7] 曾召华, 刘贵忠. 最小均方算法用于数字信号的性能[J]. 长安大学学报: 自然科学版, 2003, 23(1): 97-100. https://www.cnki.com.cn/Article/CJFDTOTAL-XAGL200301026.htmZeng Zhao-hua, Liu Gui-zhong. Performance of least-mean-square(LMS)algorithm for digital signal[J]. Journal of Chang an University: Natural Science Edition, 2003, 23(1): 97-100. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XAGL200301026.htm [8] 肖旺新, 张雪, 黄卫. 视频交通图像自适应阈值边缘检测[J]. 交通运输工程学报, 2003, 3(4): 104-107. http://transport.chd.edu.cn/article/id/200304020Xiao Wang-xin, Zhang Xue, Huang Wei. Adaptive thresholds edge detection of traffic i mage[J]. Journal of Traffic and Transportation Engineering, 2003, 3(4): 104-107. (in Chinese) http://transport.chd.edu.cn/article/id/200304020 [9] 鲁光泉, 许洪国, 马社强, 等. 交通事故摄影图像的自标定三维重建模型[J]. 交通运输工程学报, 2006, 6(3): 109-113. http://transport.chd.edu.cn/article/id/200603023Lu Guang-quan, Xu Hong-guo, Ma She-qiang, et al. Self-calibration three-dimension reconstruction model of traffic accident photographs[J]. Journal of Traffic and Transportation Engineering, 2006, 6(3): 109-113. (in Chinese) http://transport.chd.edu.cn/article/id/200603023 [10] 王福建, 李铁强, 俞传正. 道路交通事故灰色Verhulst预测模型[J]. 交通运输工程学报, 2006, 6(1): 122-126. http://transport.chd.edu.cn/article/id/200601026Wang Fu-jian, Li Tie-qiang, Yu Chuan-zheng. Grey Ver-hulst predictive model of road traffic accidents[J]. Journal of Traffic and Transportation Engineering, 2006, 6(1): 122-126. (in Chinese) http://transport.chd.edu.cn/article/id/200601026