留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于标杆的多车多品种货物装载优化算法

刘小群 马士华

刘小群, 马士华. 基于标杆的多车多品种货物装载优化算法[J]. 交通运输工程学报, 2007, 7(1): 99-105.
引用本文: 刘小群, 马士华. 基于标杆的多车多品种货物装载优化算法[J]. 交通运输工程学报, 2007, 7(1): 99-105.
Liu Xiao-qun, Ma Shi-hua. Optimization algorithm of multi-truck multi-category goods loading based on benchmark methods[J]. Journal of Traffic and Transportation Engineering, 2007, 7(1): 99-105.
Citation: Liu Xiao-qun, Ma Shi-hua. Optimization algorithm of multi-truck multi-category goods loading based on benchmark methods[J]. Journal of Traffic and Transportation Engineering, 2007, 7(1): 99-105.

基于标杆的多车多品种货物装载优化算法

基金项目: 

国家自然科学基金项目 70332001

华中科技大学优秀博士学位论文基金项目 D0540

详细信息
    作者简介:

    刘小群(1980-), 男, 安徽潜山人, 地壳运动监测工程研究中心助理研究员, 工学博士, 从事物流、供应链及项目管理研究

  • 中图分类号: U492.3

Optimization algorithm of multi-truck multi-category goods loading based on benchmark methods

More Information
    Author Bio:

    Liu Xiao-qun(1980-), male, PhD, assistant researcher, +86-10-88015756, hustlxq@126.com

  • 摘要: 根据货物与货车体积质量比差异情况, 结合组合理论, 设计基于不同标杆的优化算法, 充分利用车辆的载质量与容积, 以提高装载效率。对于轻质货物, 以货车的载质量为标杆, 在充分利用货车容积的同时, 尽可能地提高货车的载质量利用率; 对于重质货物, 以货车的容积为标杆; 匀质货物的体积和质量相对货车都比较均衡, 以货车的体积质量比为标杆, 对货车的容积和载质量利用率同时优化。数值仿真结果表明标杆算法的效率普遍优于其他算法, 标杆算法下体积利用率曲线和载质量利用率曲线及其趋势线比较平稳, 算法的稳定性强, 适合大规模多车多品种货物的装载。

     

  • 图  1  算法流程

    Figure  1.  Algorithm flow

    图  2  体积利用率比较

    Figure  2.  Comparison of volume utilization rates

    图  3  载质量利用率比较

    Figure  3.  Comparison of loading mass untilization rates

    表  1  算法对比

    Table  1.   Comparison of algorithms

    下载: 导出CSV
  • [1] Dowsland K A, Dowsland WB. Packing problems[J]. European Journal of Operational Research, 1992, 56(1): 2-14. doi: 10.1016/0377-2217(92)90288-K
    [2] Martello S, Vigo D. Exact solution of the two-dimensional finite bon packing problem[J]. Management Science, 1998, 44(3): 388-399. doi: 10.1287/mnsc.44.3.388
    [3] Bhattacharya S, Roy R. An exact depth-first algorithmfor the pallet loading problem[J]. European Journal of Operational Research, 1998, 110(3): 610-625. doi: 10.1016/S0377-2217(97)00272-5
    [4] Scheithauer G, Sommerweib U. 4-block heuristic for the rectangle packing problem[J]. European Journal of Operational Research, 1998, 108(3): 509-526. doi: 10.1016/S0377-2217(96)00359-1
    [5] Berghammer R, Reuter F. Alinear approxi mation algorithm for bin packing with absolute approxi mation factor[J]. Science of Computer Programming, 2003, 48(1): 67-80. doi: 10.1016/S0167-6423(03)00011-X
    [6] Armstrong R D, Jin Zhi-ying. Strongly polynomial simplex algorithm for bipartite vertex packing[J]. Discrete Applied Mathematics, 1996, 64(2): 97-103. doi: 10.1016/0166-218X(94)00122-T
    [7] 孙焰, 李致中. 求双目标配装的多项式近似算法[J]. 长沙铁道学院学报, 1997, 15(2): 33-39. https://www.cnki.com.cn/Article/CJFDTOTAL-CSTD199702006.htm

    Sun Yan, Li Zhi-zhong. The polynomial algorithms for the allocation problem with two aims[J]. Journal of Changsha Rail way University, 1997, 15(2): 33-39. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-CSTD199702006.htm
    [8] Kenyon C, Remila E. A near-optimal solution to a two-dimensional cutting stock problem[J]. Mathematics of Operations Research, 2000, 25(4): 645-656. doi: 10.1287/moor.25.4.645.12118
    [9] Shachnai H, Tamir T. Polynomial ti me approxi mation schemes for class-constrained packing problems[J]. Journal of Scheduling, 2001, 4(6): 312-338.
    [10] Lodi A, Martello S, Vigo D. Recent advances on two-dimensional bin packing problems[J]. Discrete Applied Mathematics, 2002, 123(1/3): 379-396.
    [11] 卜雷, 尹传忠, 蒲云. 优化普零货物拼箱配装的遗传算法[J]. 交通运输工程学报, 2004, 4(4): 84-87. http://transport.chd.edu.cn/article/id/200404021

    Bu Lei, Yin Chuan-zhong, Pu Yun. Genetic algorithm for optimal arrangement of general piece goods[J]. Journal of Traffic and Transportation Engineering, 2004, 4(4): 84-87. (in Chinese) http://transport.chd.edu.cn/article/id/200404021
    [12] Chen Ping, Fu Zhao-hui, Li m A, et al. The two-dimensional packing problemfor irregular objects[J]. International Journal on Artificial Intelligence Tools, 2004, 13(3): 429-448. doi: 10.1142/S0218213004001624
    [13] Coff man E G, Garey MR, Johnson D S. Approxi mation Al-gorithms for NP-Hard Problems[M]. Boston: PWS Publishing Company, 1997.
    [14] Kang J, Park S. Algorithms for the variable sized bin packing problem[J]. European Journal of Operational Research, 2003, 147(2): 365-372.
    [15] 徐天亮, 刘小群. 多品种货物配装的优化方法[J]. 华中科技大学学报: 自然科学版, 2003, 31(9): 15-17. https://www.cnki.com.cn/Article/CJFDTOTAL-HZLG200309005.htm

    Xu Tian-liang, Liu Xiao-qun. Optimization for the loading of multi-category goods[J]. Journal of Huazhong University of Science and Technology: Nature Science Edition, 2003, 31(9): 15-17. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HZLG200309005.htm
    [16] 刘小群, 马士华, 徐天亮. 装载能力有限下多品种货物配装的容重比平衡法[J]. 工业工程与管理, 2004, 9(3): 62-66. https://www.cnki.com.cn/Article/CJFDTOTAL-GYGC200403014.htm

    Liu Xiao-qun, Ma Shi-hua, Xu Tian-liang. The cubadge-weight balance algorithm for the loading of multi-category goods under the li mited loading capacity[J]. Industrial Engineering and Management, 2004, 9(3): 62-66. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GYGC200403014.htm
    [17] 徐同连, 栾琨, 贾洪飞. 共同配送合并策略及其配送成本[J]. 长安大学学报: 自然科学版, 2006, 26(3): 68-71. https://www.cnki.com.cn/Article/CJFDTOTAL-XAGL200603016.htm

    Xu Tong-lian, Luan Kun, Jia Hong-fei. Consolidation strategy and distribution cost of joint distribution[J]. Journal of Chang an University: Natural Science Edition, 2006, 26(3): 68-71. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XAGL200603016.htm
  • 加载中
图(3) / 表(1)
计量
  • 文章访问数:  255
  • HTML全文浏览量:  89
  • PDF下载量:  478
  • 被引次数: 0
出版历程
  • 收稿日期:  2006-10-09
  • 刊出日期:  2007-02-25

目录

    /

    返回文章
    返回