-
摘要: 针对黄土的结构性、欠压密性、非饱和性与各向异性特点, 将黄土视为非饱和土, 基于非饱和土力学理论, 建立了相应的三维固结方程组, 利用有限元法, 分析了黄土的固结变形特征。分析发现黄土高路堤经压实后, 其垂直位移最大值发生在路堤中部, 呈抛物线趋势; 位移在路堤坡脚处最小, 路堤变形趋势在上部呈向内、向下移动的趋势, 即呈现“凹盆”, 在1/32/3路堤高处呈向外“挤出”趋势; 对于非饱和黄土, 在瞬时加载后, 其表层沉降变形可分为瞬时沉降和土体固结沉降, 前者为主要变形。结果表明建立的非饱和黄土三维固结方程能很好地模拟与分析黄土路堤的固结变形, 具有较好的应用前景。Abstract: According to the structural, under-compressible, unsaturated and anisotropic characters of loess, loess was regarded as unsaturated soil, its 3-D consolidation equations were derived based on unsaturated soil theory, and its consolidation deformation characters were analyzed by FEM.It is pointed that compressed subgrade settlement deformation appears "sag" shape, its maximum settlement lies in embackment center, embackment shoulder settlement is minimum, and 1/3~2/3 of embankment high appears outward "extrusion" tendency; stress change tendency is inward and downward increasing, and minimum shear stress lies in slope toe; for unsaturated soil, after instantaneous loading, its surface settlement contains instantaneous settlement and soil mass consolidation settlement, and the former is main deformation.Analysis result shows derived unsaturated loess 3-D consolidation equations can well simulate and analyze the consolidation deformation of loess embankment, and its application prospect is quite good.
-
Key words:
- subgrade engineering /
- loess /
- unsaturated soil /
- 3-D consolidation /
- numerical calculation /
- consolidation deformation
-
表 1 基本参数
Table 1. Basic parameters
表 2 基本参数初值
Table 2. Initial values of basic parameters
-
[1] Fredlund D G, Laharaz H. 非饱和土土力学[M]. 陈仲颐, 译. 北京: 中国建筑工业出版社, 1997. [2] 景宏君. 振动压实与黄土高路堤沉降变形[D]. 西安: 长安大学, 2004. [3] Bell J. 多孔介质流体力学[M]. 李竞生, 译. 北京: 中国建筑工业出版社, 1983. [4] 杨代泉, 沈珠江. 非饱和土一维固结简化计算[J]. 岩土工程学报, 1991, 13(5): 70-78. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC200705001.htmYang Dai-quan, Shen Zhu-jiang. One-dimensional consolidation simplified numeration of unsaturated soil[J]. ChineseJournal of Geotechnical Engineering, 1991, 13(5): 70-78. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC200705001.htm [5] 景宏君, 张斌. 黄土路基强度规律[J]. 交通运输工程学报, 2004, 4(2): 14-18. doi: 10.3321/j.issn:1671-1637.2004.02.004Jing Hong-jun, Zhang Bin. Loess subgrade strengthlaw[J]. Journal of Traffic and Transportation Engineering, 2004, 4(2): 14-18. (in Chinese) doi: 10.3321/j.issn:1671-1637.2004.02.004 [6] 王芝银, 李云鹏, 卢文晓. 地基土受横向挤密和纵向压密作用的量化分析[J]. 长安大学学报: 自然科学版, 2004, 24(2): 30-34. doi: 10.3321/j.issn:1671-8879.2004.02.007Wang Zhi-yin, Li Yun-peng, Lu Wen-xiao. Quantitative analysis of horizontal pack-press and vertical compressive effect for foundation soil[J]. Journal of Chang'an University: Natural Science Edition, 2004, 24(2): 30-34. (in Chinese) doi: 10.3321/j.issn:1671-8879.2004.02.007 [7] 钱家欢, 殷宗泽. 土工原理与计算[M]. 北京: 中国水利水电出版社, 2000. [8] Smith I M. 有限元方法编程[M]. 王菘, 译. 北京: 电子工业出版社, 2003. [9] 朱伯芳. 有限单元法原理与应用[M]. 北京: 中国水利水电出版社, 2000. [10] 王晓谋, 袁怀宇. 路堤下河滩相软土地基变形研究[J]. 中国公路学报, 2003, 16(2): 22-27. doi: 10.3321/j.issn:1001-7372.2003.02.006Wang Xiao-mou, Yuan Huai-yu. Study of deformation of alluvial flat soft clay foundation under embankment[J]. China Journal of Highway and Transport, 2003, 16(2): 22-27. (in Chinese) doi: 10.3321/j.issn:1001-7372.2003.02.006