-
摘要: 为了提高船舶操纵模拟器的精度, 应用船舶操纵性分离建模理论, 基于傅汝德-克雷诺夫假设, 将船舶近似为箱型船, 估算波浪对船舶六自由度运动的干扰力与力矩, 并将波浪的干扰力与力矩作为外力与力矩的一部分, 叠加到分离型船舶运动数学模型中, 建立了船舶在规则波作用下六自由度船舶运动的数学模型, 给出5级海况下船舶全速旋回运动响应的时间历程仿真曲线。仿真结果显示: 仿真结果与相关文献结果相近, 运动趋势一致, 能够满足大型船舶操纵模拟器对船舶运动数学模型仿真的精度要求, 同时船舶运动数学模型由3自由度增至6自由度, 提高了模拟的逼真度。Abstract: In order to improve the precision of ship-handling simulator, a ship motion mathematical model with six degrees of freedom(DOF) in regular wave was put forward by using separate modeling theory based on Froude-Krylov hypothesis. In the model, ship was regarded as trunk ship, the interferential forces and moments of regular wave were calculated, and were regarded as a part of external forces to add to the model respectively. A practice ship's data was used to create the model. The time curves of ship's turning motion at full speed under 5 kinds of sea states were simulated and analyzed. Analysis result shows that the model is feasible, simulation curves near to the result of relative reference, their trends are coincident, the precision of the model meets with the requirement of full mission ship-handling simulator; ship motion mathematical model is updated from three to six DOFs, so that simulator fidelity is improved.
-
表 1 实习船参数
Table 1. Practicing ship parameters
总长Loa/m 设计水线长Lwl/m 两柱间长Lpp/m 船宽B/m 型深D/m 139.80 130.55 126.00 20.80 11.40 设计吃水d/m 方型系数Cb 棱型系数Cp 排水量Δ/t 8.00 0.680 0.693 14 680 -
[1] Hamamoto M, Akiyoshi T. Study on ship motions and capsizingin following seas[J]. Journal of the Society of Naval Architects of Japan, 1988, 163(2): 173-180. [2] Hamamoto M, Enomoto T, Sera W, et al. Model experiments of ship capsizein astern seas[J]. Journal of the Society of Naval Architects of Japan, 1996, 179(1): 77-87. [3] Hamamoto M, Ki m Y, Uwatoko K. Study on ship motions and capsizingin following seas[J]. Journal of the Society of Naval Architects of Japan, 1991, 170(2): 173-182. [4] Inoue S, Hirano M, Kiji ma K, et al. A practical calculation method of ship maneuvering motion[J]. International Shipbuilding Progress, 1982, 325(3): 207-222. [5] Inoue S, Hirano M, Kiji ma K. Hydrodynamic derivatives on ship manoeuvring[J]. International Shipbuilding Progress, 1981, 321(2): 112-125. [6] 黄国梁, 刘天威, 严乃长, 等. 船舶在规则波中回转运动的研究[J]. 上海交通大学学报, 1996, 30(10): 152-158. https://www.cnki.com.cn/Article/CJFDTOTAL-SHJT610.025.htmHuang Guo-liang, Liu Tian-wei, Yan Nai-chang, et al. An investigation of ship turning motion in regular waves[J]. Journal of Shanghai Jiaotong University, 1996, 30(10): 152-158. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SHJT610.025.htm [7] 朱军, 庞永杰, 徐玉如. 规则波浪中舰船操纵运动计算[J]. 哈尔滨工程大学学报, 2004, 25(1): 1-5. doi: 10.3969/j.issn.1006-7043.2004.01.001Zhu Jun, Pang Yong-jie, Xu Yu-ru. Maneuvering prediction of a shipin regular waves[J]. Journal of Harbin Engineering University, 2004, 25(1): 1-5. (in Chinese) doi: 10.3969/j.issn.1006-7043.2004.01.001 [8] Fang Ming-chuang, Luo J H, Lee M L. A nonlinear mathematical model for ship turning circle simulation in wave[J]. Journal of Ship Research, 2005, 49(2): 69-79. doi: 10.5957/jsr.2005.49.2.69 [9] 范佘明, 盛子寅, 陶尧森, 等. 船舶在波浪中的操纵运动预报[J]. 中国造船, 2001, 42(2): 26-33. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGZC200102004.htmFan She-ming, Sheng Zi-yin, Tao Yao-sen, et al. Prediction of ship maneuvering motionin waves[J]. Shipbuilding of China, 2001, 42(2): 26-33. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGZC200102004.htm [10] 李子富, 杨盐生. 船舶在规则波中纵摇与升沉运动仿真[J]. 大连海事大学学报: 自然科学版, 2002, 28(4): 13-16. https://www.cnki.com.cn/Article/CJFDTOTAL-DLHS200204004.htmLi Zi-fu, Yang Yan-sheng. Ship simulation on heave and pitchin regular waves[J]. Journal of Dalian Maritime University: Natural Science Edition, 2002, 28(4): 13-16. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DLHS200204004.htm [11] 李积德. 船舶耐波性[M]. 哈尔滨: 哈尔滨船舶工程学院出版社, 1991. [12] 杨盐生. 不确定系统的鲁棒控制及其在船舶运动控制中的应用[D]. 大连: 大连海事大学, 2000. [13] 贾欣乐, 杨盐生. 船舶运动数学模型[M]. 大连: 大连海事大学出版社, 1999. [14] 尹勇. 分布式航海仿真系统中视景实时生成算法的研究[D]. 大连: 大连海事大学, 2001.