-
摘要: 为了分析碎石材料横观各向同性特性对沥青路面结构设计的影响, 评价其使用特性, 运用状态空间理论, 基于横观各向同性层状弹性体系理论解, 使用路面结构分析程序ANISOLAY-ER, 对基于土基和碎石类材料横观各向同性特性的路面结构设计进行了分析, 给出了5种典型沥青路面结构三层体系设计诺谟图, 并对一碎石基层沥青路面结构厚度进行了程序化设计。结果表明: 在考虑沥青路面关键性设计指标的情况下, 对于碎石基层沥青路面结构, 沥青层底部拉应变和路表弯沉都普遍比容许值小50%左右, 其控制设计指标主要为路基顶部的压应变, 车辙为其主要破坏模式。Abstract: In order to analyze the effect of macadam cross-anisotropy on asphalt pavement structure design, and evaluate the performance of asphalt pavement with macadam base, state-space theory was used, cross-anisotropic layered elastic system theory was established, pavement structure analytical program ANISOLAYER was compiled, and asphalt pavement structure designs based on the crossanisotropy of subgrade and macadam base were analyzed. Five common asphalt pavement structures with macadam base were considered, the three-layered nomographs of thickness design for asphalt pavement structure were given, and the program design of asphalt pavement structure was carried out for a typical example. Analytic result shows that AC strains and surface deflections are close to 50% of their permitted values, the compressive strain at the top of subgrade is main critical pavement response, and the rutting is main pavement demolishing model.
-
Key words:
- pavement engineering /
- macadam base /
- cross-anisotropy /
- ANISOLAYER program /
- program design /
- nomograph design
-
表 1 路面类型的选择
Table 1. Choice of pavement types
公路等级 路面等级 面层类型 设计年限/a 设计年限内每车道累计标准轴次/万次 高速公路、一级公路 高级路面 沥青混凝土 15 > 400 二级公路 高级路面 沥青混凝土 12 > 200 次高级路面 热拌沥青碎石混合料, 采用沥青贯入式 10 100~200 三级公路 次高级路面 乳化沥青碎石混合料, 采用沥青表面处治 8 10~100 四级公路 中级路面 水结碎石、泥结碎石与级配碎石等 5 < 10 低级路面 粒料改善土 5 表 2 设计指标容许值
Table 2. Permitted values of design indices
交通等级 104εr 104εz σm/MPa 土基模量/MPa 半刚性基层lc/0.01 mm 柔性基层等lc/0.01 mm 103 17.430 0 18.020 0 0.668 2 30 156.864 209.931 50 130.514 174.667 70 115.625 154.741 90 105.620 141.360 104 8.659 9 10.770 0 0.518 7 30 117.900 157.789 50 98.097 131.284 70 86.906 116.307 90 79.389 106.246 105 4.302 0 6.441 0 0.402 6 30 88.620 118.598 50 73.730 98.676 70 65.320 87.420 90 59.670 79.857 106 2.137 0 3.851 0 0.312 5 30 66.610 89.140 50 55.420 74.167 70 49.097 65.706 90 44.850 60.020 107 1.062 0 2.302 5 0.242 6 30 50.064 67.000 50 41.654 55.746 70 36.902 49.386 90 33.710 45.114 108 0.527 3 1.377 0 0.188 3 30 37.629 50.359 50 31.308 41.900 70 27.736 37.120 90 25.340 33.910 -
[1] GrahamJ, Houlsby G T. Anisotropic elasticity of a natural clay[J]. Geotechnique, 1983, 33 (2): 164-181. [2] Gazetas G. Stresses and displacements in cross-anisotropic soils[J]. Journal of Geotechnical Engineering, 1982, 108 (4): 532-554. [3] Lo S C R, Lee I K. Response of granular soil along constant stress increment ratio path[J]. Journal of Geotechnical Engineering, 1990, 116 (3): 355-376. [4] Tutumluer E, Thompson M R. Anisotropic modeling of granular bases[R]. Illinois: University of Illinois, 1998. [5] Allen J. The effect of nonconstant lateral pressures of the resilient response of granular material[D]. Illinois: University of Illinois, 1973. [6] Crockford W W, Bendana L J, Yang WS, et al. Modelling stresses and strains states in pavement structures incorporating thick granular layers[R]. Texas: Texas Transportation Institute, 1990. [7] Uzan J. Resilient characterization of pavement materials[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 1992, 16 (4): 453-459. [8] Tutumluer E. Anisotropic behavior of unbound aggregate[R]. Illinois: University of Illinois, 1998. [9] 张洪亮, 胡长顺, 许伟清. 移动荷载作用下柔性路面的动力响应[J]. 长安大学学报: 自然科学版, 2005, 25 (5): 6-10. doi: 10.3321/j.issn:1671-8879.2005.05.002Zhang Hong-liang, Hu Chang-shun, Xu Wei-qing. Dynamic response of flexible pavement under movingload[J]. Journal of Chang an University: Natural Science Edition, 2005, 25 (5): 6-10. (in Chinese) doi: 10.3321/j.issn:1671-8879.2005.05.002 [10] 刘杰, 张可能. 复合地基荷载传递规律及变形计算[J]. 中国公路学报, 2004, 17 (1): 20-23. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL200401005.htmLiu Jie, Zhang Ke-neng. Load transfer law and deformation calculating of the composite foundation[J]. China Journal of Highway and Transport, 2004, 17 (1): 20-23. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL200401005.htm [11] 马骉, 莫石秀, 王秉纲. 基于剪切性能的级配碎石关键筛孔合理范围确定[J]. 交通运输工程学报, 2005, 5 (4): 27-31. http://transport.chd.edu.cn/article/id/200504006Ma Biao, Mo Shi-xiu, Wang Bing-gang. Rational range determination of key sieve pores for graded crushed stone based on shear performance[J]. Journal of Traffic and Transportation Engineering, 2005, 5 (4): 27-31. (in Chinese) http://transport.chd.edu.cn/article/id/200504006 [12] 栗振锋, 胡长顺. 轴对称横观各向同性半无限体表面位移的求解[J]. 长安大学学报: 自然科学版, 2002, 22 (5): 13-16. https://www.cnki.com.cn/Article/CJFDTOTAL-XAGL200205003.htmLi Zhen-feng, Hu Chang-shun. Solution of semi-infinite surface dislocation of axissymmetrical transverse isotropy[J]. Journal of Chang an University: Natural Science Edition, 2002, 22 (5): 13-16. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XAGL200205003.htm