Influence factors and simplified calculation of interbedded shear stress of asphalt paving on steel bridge
-
摘要: 为了减小钢桥桥面铺装层间剪应力, 建立桥面系三维有限元计算模型, 分析了不同荷位、钢板厚度、U肋开口宽度、铺装厚度、铺装模量、层间接触条件以及轴载大小对铺装层间纵横向剪应力的影响, 推导了实用的应力简化计算公式。研究发现桥面板不均匀变形使得铺装层间剪应力远大于同条件下的路面结构; 影响显著的因素依次为轴载大小、钢板厚度、U肋开口宽度以及铺装参数; 层间完全光滑有利于抗剪, 但降低了桥面系整体刚度; 控制重载, 加强桥面系刚度与选择柔性层间粘结材料是减小层间剪应力的有效措施。Abstract: In order to minish the interbedded shear stress of asphalt paving, 3-D finite element model of bridge deck was set up, the influences of load position, steel deck thickness, the open width of U shape rib, asphalt thickness, asphalt modulus, contact condition and heavy load on the longitudinal-transverse shear stresses were analyzed, and the simplified calculation formulae of the stresses were concluded. It is pointed that the shear stresses are much larger than that of road structure in same condition because of uneven deformation, the main influence factors in order are heavy load, steel deck thickness, the open width of U shape rib and paving parameters; completely smooth state between asphalt concrete and steel deck lowers the whole stiffness of deck system, but benefits to resist shear stress; controlling heavy loads, stiffening steel deck and selecting flexible interbedded sticking materials are effective method to reduce the shear stress between steel deck and asphalt paving.
-
表 1 计算参数
Table 1. Calculation parameters
顶板板厚/mm 12 横隔板板厚/mm 10 横隔板间距/mm 3200 顶板U形加劲肋 上口宽度/mm 300 下口宽度/mm 169 高度/mm 280 间距/mm 600 板厚/mm 6 铺装层厚度/mm 50 铺装层材料模量/GPa 1 表 2 不同横向荷位对应剪应力
Table 2. Shear stresses at different transverse load positions
MPa 横隔板跨中位置 最大横向剪应力 最大纵向剪应力 横向荷位1 0.239 0.185 横向荷位2 0.643 0.335 横向荷位3 0.265 0.192 表 3 不同纵向荷位对应剪应力
Table 3. Shear stresses at different longitudinal load positions
距横隔板位置/m 最大横向剪应力/MPa 最大纵向剪应力/MPa 1.6 0.643 0.335 0.8 0.643 0.330 0.4 0.648 0.330 0.3 0.650 0.330 0.2 0.647 0.330 0.1 0.625 0.331 0.0 0.628 0.324 表 4 不同桥面板厚度对应剪应力
Table 4. Shear stresses aimed at different deck thicknesses
桥面板厚度/m 0.010 0.012 0.014 0.016 最大横向剪应力/MPa 0.809 0.643 0.517 0.434 最大纵向剪应力/MPa 0.394 0.335 0.289 0.256 表 5 不同U肋开口宽度对应剪应力
Table 5. Shear stresses aimed at different open widthes of U shape rib
U肋开口宽度/m 0.3 0.4 0.5 最大横向剪应力/MPa 0.643 0.751 0.800 最大纵向剪应力/MPa 0.335 0.375 0.384 表 6 不同横隔板间距对应剪应力
Table 6. Shear stresses aimed at different cross-beam spaces
横隔板间距/m 2.4 2.8 3.2 3.6 4.0 最大横向剪应力/MPa 0.641 0.642 0.643 0.644 0.645 最大纵向剪应力/MPa 0.335 0.335 0.335 0.337 0.333 表 7 不同铺装厚度对应剪应力
Table 7. Shear stresses aimed at different paving thicknesses
铺装层厚度/cm 3 5 6 8 10 12 最大横向剪应力/MPa 0.651 0.643 0.592 0.522 0.456 0.397 最大纵向剪应力/MPa 0.304 0.335 0.326 0.296 0.262 0.231 表 8 不同铺装层模量对应剪应力
Table 8. Shear stresses aimed at different paving moduli
MPa 铺装层模量 500 1000 1500 2000 4000 10000 15000 最大横向剪应力 0.465 0.643 0.753 0.827 0.977 1.150 1.198 最大纵向剪应力 0.263 0.335 0.381 0.414 0.488 0.567 0.595 表 9 不同竖向荷载对应剪应力
Table 9. Shear stresses aimed at different vertical loads
胎压/MPa 0.707 0.979 1.305 1.632 对应的后轴载/t 13 18 24 30 最大横向剪应力/MPa 0.643 0.890 1.187 1.484 最大纵向剪应力/MPa 0.335 0.464 0.618 0.773 -
[1] 陈仕周, 胥志宏. 复合改性沥青在钢桥面浇注式沥青混凝土中的应用[J]. 公路交通技术, 2005, 6 (10): 73-76. https://www.cnki.com.cn/Article/CJFDTOTAL-GLJT200505016.htmChen Shi-zhou, Xu Zhi-hong. Application of multi-modified asphalt to gussasphalt of steel deck[J]. Technology of Highway and Transport, 2005, 6 (10): 73-76. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GLJT200505016.htm [2] 吴一鸣. 大跨径钢桥桥面铺装力学深入研究[D]. 南京: 东南大学, 2005. [3] 顾兴宇. 悬索桥桥面沥青铺装层力学分析及结构设计研究[D]. 南京: 东南大学, 2002. [4] 黄卫, 刘振清. 大跨径钢桥面铺装设计理论与方法研究[J]. 土木工程学报, 2005, 38 (1): 51-59. doi: 10.3321/j.issn:1000-131X.2005.01.007Huang Wei, Liu Zhen-qing. Research on theory and method of long-span steel bridges deck surfacing design[J]. China Civil Engineering Journal, 2005, 38 (1): 51-59. (in Chinese) doi: 10.3321/j.issn:1000-131X.2005.01.007 [5] 钱振东, 罗剑, 敬淼淼. 沥青混凝土钢桥面铺装方案受力分析[J]. 中国公路学报, 2005, 18 (2): 61-64. doi: 10.3321/j.issn:1001-7372.2005.02.012Qian Zhen-dong, Luo Jian, Jing Miao-miao. Mechanical analysis of asphalt concrete paving projects on steel bridge deck[J]. China Journal of Highway and Transport, 2005, 18 (2): 61-64. (in Chinese) doi: 10.3321/j.issn:1001-7372.2005.02.012 [6] 钱振东, 黄卫, 骆俊伟, 等. 正交异性钢桥面铺装层的力学特性分析[J]. 交通运输工程学报, 2002, 2 (3): 47-51. http://transport.chd.edu.cn/article/id/200203010Qian Zhen-dong, Huang Wei, Luo Jun-wei, et al. Mechanical analysis of pavement of orthotropic steel deck[J]. Journal of Traffic and Transportation Engineering, 2002, 2 (3): 47-51. (in Chinese) http://transport.chd.edu.cn/article/id/200203010 [7] 方萍, 万水. 钢桥面铺装力学特性试验研究[J]. 公路交通技术, 2002, 3 (12): 7-11. https://www.cnki.com.cn/Article/CJFDTOTAL-GLJT200204002.htmFang Ping, Wan Shui. Experimental research on mechanic behavior of steel deck pavement[J]. Technology of Highway and Transport, 2002, 3 (12): 7-11. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GLJT200204002.htm [8] Roman W. Structure behavior of surfacings on steel orthotropic decks and considerations for practical design[J]. Structure Engineering International, 2002, 12 (2): 124-129. [9] 张晓春, 成锋, 魏奇芬. 大跨径钢桥面铺装优化研究[J]. 公路交通科技, 2005, 22 (6): 85-88. https://www.cnki.com.cn/Article/CJFDTOTAL-GLJK200506024.htmZhang Xiao-chun, Cheng Feng, Wei Qi-fen. Study on optimal deck pavement of long span steel bridge[J]. Journal of Highway and Transportation Research and Development, 2005, 22 (6): 85-88. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GLJK200506024.htm [10] 黄卫, 刘振清, 钱振东, 等. 基于疲劳等效的钢桥面铺装体系轴载换算方法[J]. 交通运输工程学报, 2005, 5 (1): 14-18. http://transport.chd.edu.cn/article/id/200501004Huang Wei, Liu Zhen-qing, Qian Zhen-dong, et al. Conversion method of axle-load for steel bridge deck based on fatigue-equivalent[J]. Journal of Traffic and Transportation Engineering, 2005, 5 (1): 14-18. (in Chinese) http://transport.chd.edu.cn/article/id/200501004