Central angle influence of long-span curve bridge on its inner forces, displacements and stability
-
摘要: 为提高高墩大跨径弯桥的安全性, 对不同圆心角的典型弯桥在考虑大变形和材料非线性情况下, 利用有限元法对刚构桥的墩梁内力与位移进行计算, 分析了桥跨的内力、位移和非线性稳定荷载系数与弯桥圆心角的关系。分析结果显示: 最大悬臂阶段主梁根部的弯矩随曲线圆心角增大而略有减小, 但扭矩会快速增大; 曲线圆心角越大, 悬臂端竖向、横向位移和墩顶横桥向位移越大, 在圆心角大于38°, 非线性已很明显, 悬臂端和墩顶位移会急剧增大; 非线性稳定系数约为稳定特征系数的35%, 随着弯桥圆心角的增大, 其稳定系数会迅速变小; 综合考虑, 大跨径弯桥圆心角不宜大于38°。Abstract: In order to improve the safety of long-span curve bridge with high piers, the large distortion and material nonlinearity of the bridge were considered, the inner forces and displacements of piers of typical curve rigid frame bridges with different central angles of curve were computed by using finite element method, and the relations of the inner forces, displacements and nonlinear stability load coefficients to the central angle of curve were concluded. Analysis result shows that the end maximum moment of main beam during cantilever construction little decreases with the increase of the angle, but the torsion rapidly increases; the larger the angle is, the larger the transverse-vertical displacements of cantilever end and the transverse displacement at pier top are, the displacements sharply increase, their nonlinear trends are obvious; the nonlinear stability coefficient of bridge is 35% of eigenvalue stability coefficient, the stability load decreases rapidly with the augmenting of the angle; the central angle of curve can not be larger than 38° in order to ensure bridge safety.
-
Key words:
- bridge engineering /
- long-span curve bridge /
- central angle /
- inner forces /
- displacement /
- stability /
- cantilever construction /
- nonlinear analysis
-
表 1 主梁内力计算结果
Table 1. Calculation result of inner forces for main beam
表 2 主梁内力比较
Table 2. Comparison of inner forces for main beam
表 3 位移计算结果
Table 3. Calculation result of displacements
表 4 稳定系数计算结果
Table 4. Calculation result of stability coefficients
表 5 不同圆心角对应非线性稳定系数
Table 5. Nonlinear stability coefficients aimed at different central angles
-
[1] 王钧利, 贺拴海. 钢筋混凝土高墩非线性稳定分析和模型试验[J]. 长安大学学报: 自然科学版, 2005, 25(4): 31-34. https://www.cnki.com.cn/Article/CJFDTOTAL-XAGL200504008.htmWang Jun-li, He Shuan-hai. Nonlinear stability and model test of reinforce concrete for high piers[J]. Journal of Chang an University: Natural Science Edition, 2005, 25(4): 31-34. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XAGL200504008.htm [2] 陈军, 许晓锋, 黄福伟. 大跨径弯桥的计算分析[J]. 公路交通技术, 2005, 21(1): 58-60. doi: 10.3969/j.issn.1009-6477.2005.01.018Chen Jun, Xu Xiao-feng, Huang Fu-wei. Calculation and analysis of large span curved bridges[J]. Technology of Highway and Transport, 2005, 21(1): 58-60. (in Chinese) doi: 10.3969/j.issn.1009-6477.2005.01.018 [3] 王钧利, 贺拴海. 高墩大跨径弯桥在悬臂施工阶段刚构的非线性稳定分析[J]. 交通运输工程学报, 2006, 6(2): 30-34. doi: 10.3321/j.issn:1671-1637.2006.02.007Wang Jun-li, He Shuan-hai. Nonlinear analysis of long-span curve rigid bridges with high piers during cantilever construction[J]. Journal of Traffic and Transportation Engineering, 2006, 6(2): 30-34. (in Chinese) doi: 10.3321/j.issn:1671-1637.2006.02.007 [4] Mirza S A, Lacroix E A. Comparative study of strength-computation methods for rectangular reinforced concrete columns[J]. ACI Structural Journal, 2002, 99(4): 399-410. [5] Moyer MJ, Kowalsky MJ. Influence of tension strain on buckling of reinforcement in concrete columns[J]. ACI Structural Journal, 2003, 100(1): 75-85. [6] 王钧利, 贺拴海. 高墩大跨径曲线桥悬臂施工阶段非线性分析[J]. 公路交通科技, 2005, 22(10): 64-67. https://www.cnki.com.cn/Article/CJFDTOTAL-GLJK200510016.htmWang Jun-li, He Shuan-hai. Nonlinear analysis of large span curved rigid bridges with high piers during cantilever construction[J]. Journal of Highway and Transportation Research and Development, 2005, 22(10): 64-67. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GLJK200510016.htm [7] 郑一峰, 黄桥, 冷曦晨. 预弯组合梁桥的弹塑性极限承载能力研究[J]. 中国公路学报, 2005, 18(4): 54-58. doi: 10.3321/j.issn:1001-7372.2005.04.011Zheng Yi-feng, Huang Qiao, Leng Xi-chen. Research on elasticplastic ultimate capacity of preflex beambridges[J]. China Journal of Highway and Transport, 2005, 18(4): 54-58. (in Chinese) doi: 10.3321/j.issn:1001-7372.2005.04.011 [8] 王钧利, 贺拴海. 高墩大跨径曲线刚构桥设计参数与稳定分析[J]. 武汉理工大学学报: 交通科学与工程版, 2005, 29(5): 717-720. https://www.cnki.com.cn/Article/CJFDTOTAL-JTKJ200505019.htmWang Jun-li, He Shuan-hai. Design parameters and stability analysis of long-span curve rigid frame bridges with high piers[J]. Journal of Wuhan University of Technology: Transportation Science & Engineering, 2005, 29(5): 717-720. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JTKJ200505019.htm [9] 赵伟封, 马宝林, 陈谐民, 等. 薄壁特高墩预应力混凝土连续刚构桥的空间稳定性[J]. 长安大学学报: 自然科学版, 2004, 24(4): 51-54. https://www.cnki.com.cn/Article/CJFDTOTAL-XAGL200404012.htmZhao Wei-feng, Ma Bao-lin, Chen Xie-min, et al. Space stability of pre-stressed concrete continuous rigid frame bridge with tall pier and thin wall[J]. Journal of Chang an University: Natural Science Edition, 2004, 24(4): 51-54. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XAGL200404012.htm [10] 王新敏, 陈伟, 刘庆宽. 杆系结构非线性静力分析的数值模拟[J]. 石家庄铁道学院学报, 2004, 17(2): 5-10. https://www.cnki.com.cn/Article/CJFDTOTAL-SJZT200402002.htmWang Xin-min, Chen Wei, Liu Qing-kuan. Numerical simulation of nonlinear static analysis for frames[J]. Journal of Shijiazhuang Railway Institute, 2004, 17(2): 5-10. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SJZT200402002.htm [11] 王钧利, 贺拴海. 大跨径连续刚构桥高墩设计与稳定性[J]. 长安大学学报: 自然科学版, 2006, 26(5): 35-39. https://www.cnki.com.cn/Article/CJFDTOTAL-XAGL200605008.htmWang Jun-li, He Shuan-hai. Design of high piles and their stability analysis of long-span curve rigid frame bridges[J]. Journal of Chang an University: Natural Science Edition, 2006, 26(5): 35-39. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XAGL200605008.htm [12] 陈峰, 胡大琳. 大跨径钢管混凝土拱桥非线性静风稳定性[J]. 长安大学学报: 自然科学版, 2006, 26(2): 42-46. https://www.cnki.com.cn/Article/CJFDTOTAL-XAGL200602010.htmChen Feng, Hu Da-lin. Aerostatics stability of long-span concrete-filled steel tube arch bridge[J]. Journal of Chang an University: Natural Science Edition, 2006, 26(2): 42-46. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XAGL200602010.htm [13] 徐文平, 裴铭海, 戴捷, 等. 大跨简支系干拱桥非线性稳定性[J]. 交通运输工程学报, 2005, 5(4): 53-57. http://transport.chd.edu.cn/article/id/200504011Xu Wen-ping, Pei Ming-hai, Dai Jie, et al. Nonlinear stability of simply supported tied-arch bridge with long span[J]. Journal of Traffic and Transportation Engineering, 2005, 5(4): 53-57. (in Chiense). http://transport.chd.edu.cn/article/id/200504011 [14] 黄侨, 郑一峰, 李光俊. 预弯组合梁非线性全过程分析方法[J]. 中国公路学报, 2006, 19(4): 88-93. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL200604015.htmHuang Qiao, Zheng Yi-feng, Li Guang-jun. Nonlinear whole-course analysis method of preflex composite beam[J]. China Journal of Highway and Transport, 2006, 19(4): 88-93. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL200604015.htm [15] 谢素超, 田红旗, 姚松. 板梁偏心连接结构有限元分析[J]. 交通运输工程学报, 2006, 6(4): 5-9. http://transport.chd.edu.cn/article/id/200604002Xie Su-chao, Tian Hong-qi, Yao Song. Finite element analysis of composite structure of eccentric beam and plate[J]. Journal of Traffic and Transportation Engineering, 2006, 6(4): 5-9. (in Chiense). http://transport.chd.edu.cn/article/id/200604002 [16] 刘小燕, 颜东煌, 张峰, 等. 预应力高强混凝土梁极限承载力分析[J]. 中国公路学报, 2006, 19(1): 58-61. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL200601011.htmLiu Xiao-yan, Yan Dong-huang, Zhang Feng, et al. Ultimate load analysis of prestressed high-strength concrete beam[J]. China Journal of Highway and Transport, 2006, 19(1): 58-61. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL200601011.htm