留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

地震地基液化大变形对桥梁桩基危害性三维数值分析

童立元 王斌 刘义怀

童立元, 王斌, 刘义怀. 地震地基液化大变形对桥梁桩基危害性三维数值分析[J]. 交通运输工程学报, 2007, 7(3): 91-94.
引用本文: 童立元, 王斌, 刘义怀. 地震地基液化大变形对桥梁桩基危害性三维数值分析[J]. 交通运输工程学报, 2007, 7(3): 91-94.
Tong Li-yuan, Wang Bin, Liu Yi-huai. 3-D numerical analysis of large subsoil liquefaction distortion influence resulted from earthquake on bridge pile foundation[J]. Journal of Traffic and Transportation Engineering, 2007, 7(3): 91-94.
Citation: Tong Li-yuan, Wang Bin, Liu Yi-huai. 3-D numerical analysis of large subsoil liquefaction distortion influence resulted from earthquake on bridge pile foundation[J]. Journal of Traffic and Transportation Engineering, 2007, 7(3): 91-94.

地震地基液化大变形对桥梁桩基危害性三维数值分析

基金项目: 

江苏省交通科学研究计划项目 04Y046

详细信息
    作者简介:

    童立元(1975-), 男, 安徽淮南人, 东南大学讲师, 从事高速公路特殊地基理论与设计研究

  • 中图分类号: TU435

3-D numerical analysis of large subsoil liquefaction distortion influence resulted from earthquake on bridge pile foundation

More Information
    Author Bio:

    Tong Li—yuan(1975-), male, lecturer, +86-25-83795005, atmu@seu.edu.cn

  • 摘要: 为研究地震地基液化大变形对桥梁桩基的危害性, 建立了含液化层的二层与三层土体系计算模型, 考虑桩土共同作用的非线性关系, 利用FLAC-3D有限差分软件对液化侧扩地基中的单桩、群桩进行了动力有限差分分析, 探讨了地基液化大变形条件下桩基位移与内力变化分布规律。分析结果表明: 二层与三层土体中, 液化土层和非液化土层交界面处产生的桩身弯矩极值是控制桩身破坏的关键因素, 液化土层本身对桩身弯矩的影响很小; 桩帽对桩顶的侧移有一定制约作用, 但对桩身弯矩极值的影响不显著; 群桩中上坡桩与下坡桩的侧向位移与桩身弯矩分布模式相似, 但上坡桩发生的侧向位移和桩身弯矩要略大于下坡桩情况。

     

  • 图  1  桩土作用

    Figure  1.  Interaction between pile and soil

    图  2  桩基础计算模型

    Figure  2.  Computation model of pile foundation

    图  3  二层土体下单桩桩身侧移

    Figure  3.  Lateral displacement of single pile in two soil layers

    图  4  二层土体下单桩桩身弯矩

    Figure  4.  Bending moment of single pile in two soil layers

    图  5  三层土体下单桩桩身侧移

    Figure  5.  Lateral displacement of single pile in three soil layers

    图  6  三层土体下单桩桩身弯矩

    Figure  6.  Bending moment of single pile in three soil layers

    图  7  群桩桩身侧移

    Figure  7.  Lateral displacement of group piles

    图  8  群桩桩身弯矩

    Figure  8.  Bending moment of group piles

    表  1  土体参数

    Table  1.   Soil parameters

    土层种类 体积模量K/MPa 剪切模量G/MPa 粘聚力C/kPa 内摩擦角φ/(°) 密度ρ/(kg·m-3)
    非液化土 26.70 16.00 15 24 2 000
    可液化土 6.70 4.00 30 1 880
    下载: 导出CSV

    表  2  桩体参数

    Table  2.   Pile parameters

    体积模量K/MPa 剪切模量G/MPa 弹性模量E/GPa 泊松比μ 桩径d/m 内摩擦角φ/(°) 密度ρ/(kg·m-3)
    15.02 12.85 21.0 0.20 1.0 24 2 500
    下载: 导出CSV

    表  3  桩土相互作用参数

    Table  3.   Interaction parameters between pile and soil

    作用方向 连接弹簧刚度/GPa 连接弹簧粘聚力/GPa 连接弹簧摩擦角/(°)
    剪切 130 10 30
    法向 130 10 30
    下载: 导出CSV
  • [1] Ishihara K. Liquefaction and flow failure during earthquakes[J]. Geotechnique, 1993, 43(3): 351-415. doi: 10.1680/geot.1993.43.3.351
    [2] Abdoun T. Modeling of seismically induced lateral spreading of multi-layered soil and its effect on pile foundations[D]. Troy: Rensselaer Polytechnic Institute, 1997.
    [3] 张建民. 水平地基液化后大变形对桩基础的影响[J]. 建筑结构学报, 2001, 22(5): 75-78. https://www.cnki.com.cn/Article/CJFDTOTAL-JZJB200105015.htm

    Zhang Jian-min. Effect of large horizontal post-liquefaction deformation of level ground on pile foundation[J]. Journal of Building Structures, 2001, 22(5): 75-78. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JZJB200105015.htm
    [4] 凌贤长, 王丽霞, 王东升, 等. 非自由液化场地地基动力性能大型振动台模型试验研究[J]. 中国公路学报, 2005, 18(2): 34-39. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL200502006.htm

    Ling Xian-zhang, Wang Li-xia, Wang Dong-sheng, et al. Study of large-scale shaking table proportional model test of the dynamic property of foundation in unfreedom ground of liquefaction[J]. China Journal of Highway and Transport, 2005, 18(2): 34-39. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL200502006.htm
    [5] 王斌. 地震液化大变形预测及其对高速公路工程影响研究[D]. 南京: 东南大学, 2005.
    [6] 王春玲, 曹彩芹, 黄义. 非均质地基非线性地震反应的半解析算法[J]. 长安大学学报: 自然科学版, 2005, 25(5): 43-46. https://www.cnki.com.cn/Article/CJFDTOTAL-XAGL200505009.htm

    Wang Chun-ling, Cao Cai-qin, Huang Yi. Seimi-analytic method for nonlinear seismic response of vertically non-homogeneous foundations[J]. Journal of Chang an University: Natural Science Edition, 2005, 25(5): 43-46. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XAGL200505009.htm
    [7] 孙宗军. 盾构施工与桩基础相互作用的三维力学分析与研究[D]. 南京: 东南大学, 2004.
    [8] 刘健新, 张伟, 张茜. 洛河特大桥抗震性能计算[J]. 交通运输工程学报, 2006, 6(1): 57-62. http://transport.chd.edu.cn/article/id/200601012

    Liu Jian-xin, Zhang Wei, Zhang Qian. Anti-seismic performance calculation of Luohe bridge[J]. Journal of Traffic and Transportation Engineering, 2006, 6(1): 57-62. (in Chinese) http://transport.chd.edu.cn/article/id/200601012
    [9] Dobry R, Abdoun T D, Rourke T, et al. Single pile in lateral spreads: field bending moment evaluation[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2003, 129(10): 879-889.
    [10] Ramos R. Centrifuge study of bending response of pile foundation to a lateral spreadincluding restraining effect of superstructure[D]. Troy: Rensselaer Polytechnic Institute, 1999.
    [11] 黄侨, 郑一峰, 李光俊. 预弯组合梁非线性全过程分析方法[J]. 中国公路学报, 2006, 19(4): 88-93. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL200604015.htm

    Huang Qiao, Zheng Yi-feng, Li Guang-jun. Nonlinear whole-course analysis method of preflex composite beam[J]. China Journal of Highway and Transport, 2006, 19(4): 88-93. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL200604015.htm
  • 加载中
图(8) / 表(3)
计量
  • 文章访问数:  406
  • HTML全文浏览量:  92
  • PDF下载量:  325
  • 被引次数: 0
出版历程
  • 收稿日期:  2006-12-12
  • 刊出日期:  2007-06-25

目录

    /

    返回文章
    返回