-
摘要: 针对再制造物流网络与传统生产分销物流网络的集成优化设计问题, 综合考虑网络中正向和逆向物流的设施集成与运输整合, 以及设施建设成本的规模经济效应, 基于混合整数非线性规划方法, 建立了一种再制造物流网络优化设计的扩展模型, 用来确定网络中各种设施的数量、位置及规模, 并在由此构成的各条物流路径上合理分配物流量, 使运营周期内的净收益最大。最后, 通过一个算例对模型进行了数值演算和验证。计算结果表明: 该模型能根据物流网络的实际调查数据, 得到网络的最优目标函数与决策变量值, 能有效辅助再制造物流网络优化设计。Abstract: The problem on designing an appropriate integrated logistics network structure for hybrid manufacturing/remanufacturing systems was investigated, the integration of various facilities and combined transportation of forward and reverse logistics in the network was considered, the impact of scale economics on the cost of establishing those facilities was studied, an extended model for the optimal design of remanufacturing logistics network was developed based on mixed integer nonlinear programming approach. According to the model, the numbers, locations and capacities of various facilities and the allocation of corresponding goods flows in the network were ascertained, the objective was to maximize the net revenue in operation period.Finally, the model was tested and verified by a numerical example. Computation result shows that the optimal objective function and decision-making variables of the net can be gained by using the model, and logistics network and the model can be used to assist the decision-making of the network design.
-
表 1 消费区域k的有关数据
Table 1. Relative data of consumption region k
k 1 2 3 4 5 6 坐标/(km, km) (26, 30) (12, 235) (53, 260) (209, 32) (235, 52) (262, 260) dk/件 190 210 270 220 250 300 rk/件 170 180 230 200 210 260 c/元 8 180 8 150 8 060 8 120 8 200 8 100 ckco/元 880 850 760 820 900 800 表 2 备选工厂i的有关数据
Table 2. Relative data of alternative plant i
i 1 2 3 坐标/(km, km) (53, 148) (268, 34) (132, 188) fip/万元 120 160 130 vip/元 1 000 850 870 αi 0.80 0.50 0.65 Aip/件 780 920 840 cipn/元 3 500 3 400 3 450 cipr/元 1 800 1 700 1 750 表 3 备选分销中心j的有关数据
Table 3. Relative data of alternative distribution center j
j 1 2 3 4 坐标/(km, km) (58, 40) (47, 25) (213, 71) (242, 165) fjw/万元 18 14 17 15 vjw/元 150 190 170 180 βj 0.75 0.60 0.80 0.70 Ajw/件 600 500 580 550 cjwp/元 105 120 110 115 表 4 备选回收中心l的有关数据
Table 4. Relative data of alternative return center l
l 1 2 3 坐标/(km, km) (58, 40) (47, 25) (106, 184) flt/万元 17 16 17 vlt/元 220 230 215 γl 0.70 0.60 0.55 Alt/件 450 430 460 cltp/元 160 165 155 表 5 其他处理点m的有关数据
Table 5. Relative data of other disposal site m
m 1 2 坐标/(km, km) (78, 135) (146, 254) Amd/件 400 350 cmd 55 60 表 6 决策变量的最优值
Table 6. Optimal values for decision-making variables
y2p a2p x21pw x22pw x23pw y3p a3p x31pw x32pw y1w a1w x12wz x13wz x14wz y2w a2w x21wz x24wz y3w a3w x34wz x35wz x36wz y1t a1t x21zt x31zt x41zt 1 920 108 232 580 1 520 492 28 1 600 210 270 120 1 260 190 70 1 580 30 250 300 1 360 180 30 120 x51zt x13tp x11td y2t a2t x 42xzt x52zt x22tp x23tp x21td y3t a3t x33zt x63zt x33tp x31td x32td y1s x21zs x31zs x41zs x13sp y2s x12zs x42zs x22sp x23sp 30 216 144 1 430 170 80 180 230 28 172 1 460 200 260 276 84 100 1 180 30 120 216 1 170 70 230 28 -
[1] 马祖军. 产品回收再用物流网络优化设计问题研究[R]. 成都: 西南交通大学, 2004. [2] 代颖. 再制造物流网络优化设计问题研究[D]. 成都: 西南交通大学, 2006. [3] Jayaraman V, Guide J V D R, Srivastava R. A closed-loop logistics model for remanufacturing[J]. Journal of the Operational Research Society, 1999, 50(5): 497-508. doi: 10.1057/palgrave.jors.2600716 [4] 马祖军, 代颖, 刘飞. 再制造物流网络的稳健优化设计[J]. 系统工程, 2005, 23(1): 74-78. https://www.cnki.com.cn/Article/CJFDTOTAL-GCXT200501014.htmMa Zu-jun, Dai Ying, Liu Fei. Robust opti mal design of remanufacturing logistics networks[J]. Systems Engineering, 2005, 23(1): 74-78. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GCXT200501014.htm [5] 代颖, 马祖军, 刘飞. 再制造闭环物流网络优化设计模型[J]. 中国机械工程, 2006, 17(8): 809-813. doi: 10.3321/j.issn:1004-132X.2006.08.011Dai Ying, Ma Zu-jun, Liu Fei. Opti mal model for closed-loop logistics network design in a remanufacturing environment[J]. China Mechanical Engineering, 2006, 17(8): 809-813. (in Chinese) doi: 10.3321/j.issn:1004-132X.2006.08.011 [6] Krikke HR, Bloemhof-Ruwaard J, Van Wassenhove L. Concurrent product and closed-loop supply chain design with an application to refrigerators[J]. International Journal of Production Research, 2003, 41(16): 3 689-3 719. doi: 10.1080/0020754031000120087 [7] Marin A, Pelegrin B. The return plant location problem: modelling and resolution[J]. European Journal of Operational Research, 1998, 104(2): 375-392. doi: 10.1016/S0377-2217(97)00192-6 [8] Krikke H R, Van Harten A, Schuur P C. Business case océ: reverse logistic network re-design for copiers[J]. OR Spektrum, 1999, 21(3): 381-409. [9] Fleischmann M. Quantitative Models for Reverse Logistics[M]. New York: Springer-Verlag, 2001. [10] 顾巧论, 陈秋双. 再制造/制造系统集成物流网络及信息网络研究[J]. 计算机集成制造系统, 2004, 10(7): 721-726. doi: 10.3969/j.issn.1006-5911.2004.07.001Gu Qiao-lun, Chen Qiu-shuang. Research onlogistics and information network integrating remanufacturing and manufacturing system[J]. Computer Integrated Manufacturing Systems, 2004, 10(7): 721-726. (in Chinese) doi: 10.3969/j.issn.1006-5911.2004.07.001 [11] 陈松岩, 今井昭夫. 物流网络选址与路径优化问题的模型与启发式解法[J]. 交通运输工程学报, 2006, 6(3): 118-121. doi: 10.3321/j.issn:1671-1637.2006.03.025Chen Song-yan, Imai Akio. Model and heuristic solution for location routing problems of logistics network[J]. Journal of Traffic and Transportation Engineering, 2006, 6(3): 118-121. (in Chinese) doi: 10.3321/j.issn:1671-1637.2006.03.025 [12] 李卫江, 郭晓汾, 张毅, 等. 基于Matlab优化算法的物流中心选址[J]. 长安大学学报: 自然科学版, 2006, 26(3): 76-79. https://www.cnki.com.cn/Article/CJFDTOTAL-XAGL200603019.htmLi Wei-jiang, Guo Xiao-fen, Zhang Yi, et al. Logistics center location based on Matlab optimization algorithm[J]. Journal of Chang'an University: Natural Science Edition, 2006, 26(3): 76-79. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XAGL200603019.htm [13] 李军, 辛松歆, 蔡铭. 基于拓扑处理的Logit型网络加载算法[J]. 中国公路学报, 2005, 18(4): 87-90. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL200504017.htmLi Jun, Xin Song-xin, Cai Ming. Algorithm for Logit network loading problem based on topological sorting[J]. China Journal of Highway and Transport, 2005, 18(4): 87-90. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL200504017.htm