-
摘要: 为了精确计算沥青混合料油膜厚度, 考虑了矿粉粒度、沥青混合料压实程度和沥青比例的影响, 采用HORIBA-300型激光散射粒度分布分析仪对矿粉的粒度进行测量, 分析了矿粉粒度的尺寸范围, 提出了沥青隔离膜的概念, 建立了沥青油膜厚度计算模型。采用旋转压实仪成型沥青混凝土试件, 对比分析了沥青油膜的计算值与实际测量值。分析结果表明: 采用新的油膜公式反算的沥青用量范围为4.55%~4.85%, 采用传统方法反算的沥青用量范围为4.20%~5.20%, 而试验最佳沥青用量为4.70%, 显然新方法精度高。Abstract: In order to accurately compute the asphalt film thickness of asphalt mixture, the particle-size of mineral, the compaction degree of asphalt mixture and asphalt ratio were considered, the particle-size of mineral was measured by using HORIBA-300 instrument, the particle-size distribution of mineral was analyzed, the concept of asphalt separation film was introduced, and a computation model of asphalt film thickness was put forward.The sample of asphalt mixture was molded by using rotary compaction instrument, and the computation values and measure values of asphalt film thickness were compared. Comparison result shows that the asphalt content range of asphalt mixture is from 4.55% to 4.85% with the new method, the range is from 4.20% to 5.20% with conventional method, measured optimal content is 4.70%, obviously, the computation precision of the proposed method is higher.
-
表 1 表面积因子对比
Table 1. Comparison of surface area factors
筛孔级数 筛孔尺寸Di/mm 计算的表面积因子 规范的表面积因子 0 9.500 0.405 0.410 1 4.750 0.408 0.410 2 2.360 0.817 0.820 3 1.180 1.594 1.640 4 0.600 3.012 2.870 5 0.300 6.060 6.140 6 0.150 12.295 12.290 7 0.075 32.787 32.770 8 0.030 表 2 设计级配
Table 2. Design gradation
筛孔尺寸/mm 19.000 16.000 13.200 9.500 4.750 2.360 1.180 0.600 0.300 0.150 0.075 通过率/% 100.0 98.8 88.6 72.0 48.7 32.3 22.9 17.6 12.8 8.6 5.4 表 3 不同沥青用量下混合料的特性及油膜厚度
Table 3. Asphalt film thicknesses and properties of asphalt mixtures under different asphalt contents
混合料特性 沥青用量Pb/% 4.20 4.70 5.20 5.70 理论最大相对密度 2.619 2.598 2.578 2.557 沥青相对密度 1.030 1.030 1.030 1.030 毛体积相对密度 2.474 2.496 2.516 2.531 集料的毛体积相对密度 2.769 2.769 2.769 2.769 吸收沥青用量/% 0.53 0.53 0.53 0.53 矿料间隙率/% 14.4 14.1 13.9 13.8 传统油膜厚度/μm 6.94 7.93 8.93 9.94 推荐油膜厚度/μm 4.94 7.89 12.93 24.92 油膜厚度和沥青用量的回归方程 传统算法 T=1.996 9Pb-1.450 6 推荐算法 t=6.48Pb3-87.188 Pb2+396.51Pb-602.49 -
[1] 申爱琴, 王娜, 李明国, 等. 高速公路SMA混合料高温稳定性及影响因素[J]. 长安大学学报: 自然科学版, 2006, 26(1): 1-7. https://www.cnki.com.cn/Article/CJFDTOTAL-XAGL200601000.htmShen Ai-qin, Wang Na, Li Ming-guo, et al. High temperature stability andits influencing factors of SMA mixture[J]. Journal of Chang'an University: Natural Science Edition, 2006, 26(1): 1-7. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XAGL200601000.htm [2] 王辉, 张起森. 沥青混合料目标配合比设计方法[J]. 长安大学学报: 自然科学版, 2004, 24(6): 25-28. doi: 10.3321/j.issn:1671-8879.2004.06.006Wang Hui, Zhang Qi-sen. Design method of target mixing ratio for asphalt mixture[J]. Journal of Chang'an University: Natural Science Edition, 2004, 24(6): 25-28. (in Chinese) doi: 10.3321/j.issn:1671-8879.2004.06.006 [3] 李立寒, 李新军, 钟陟鑫. 沥青混合料压实特性的影响因素分析[J]. 中国公路学报, 2001, 14(S1): 31-34. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL2001S1008.htmLi Li-han, Li Xin-jun, Zhong Zhi-xin. Analysis of factors effecting on densification characteristics of hot mix asphalt[J]. ChinaJournal of Highway and Transport, 2001, 14(S1): 31-34. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL2001S1008.htm [4] 葛折圣, 黄晓明. 沥青稳定碎石基层混合料矿料级配的优化[J]. 中国公路学报, 2002, 15(4): 4-6. doi: 10.3321/j.issn:1001-7372.2002.04.002Ge Zhe-sheng, Huang Xiao-ming. Optimization of aggregate gradation of asphalt stabilized base course mixtures[J]. China Journal of Highway and Transport, 2002, 15(4): 4-6. (in Chinese) doi: 10.3321/j.issn:1001-7372.2002.04.002 [5] Lu B, Torquato S. Nearest-surface distribution functions for polydispersed particle system[J]. Physical Review A, 1992, 45(8): 5530-5544. [6] 刘红瑛. 影响沥青混凝土水稳定性的灰关联熵分析[J]. 长安大学学报: 自然科学版, 2003, 23(6): 7-10. https://www.cnki.com.cn/Article/CJFDTOTAL-XAGL200306003.htmLiu Hong-ying. Grey relation entropy method to analyze moisture stability of asphalt concrete[J]. Journal of Chang'an University: Natural Science Edition, 2003, 23(6): 7-10. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XAGL200306003.htm [7] 张争奇, 袁迎捷, 王秉纲. 沥青混合料旋转压实密实曲线信息及其应用[J]. 中国公路学报, 2005, 18(3): 1-6. doi: 10.3321/j.issn:1001-7372.2005.03.001Zhang Zheng-qi, Yuan Ying-jie, Wang Bing-gang. Information of gyratory compaction densification curve of asphalt mixture andits application[J]. China Journal of Highway and Transport, 2005, 18(3): 1-6. (in Chinese) doi: 10.3321/j.issn:1001-7372.2005.03.001 [8] Torquato S. Random Heterogeneous Materials, Microstructure and Macroscopic Properties[M]. New York: Springer, 2001. [9] 严家伋. 道路建筑材料[M]. 第三版. 北京: 人民交通出版社, 2004. [10] 黄仰贤. 路面分析与设计[M]. 北京: 人民交通出版社, 1998. [11] JTJ F40-2004, 公路沥青路面施工技术规范[S]. [12] 肖庆一, 郝培文, 徐鸥明, 等. 沥青与矿料粘附性的测定方法[J]. 长安大学学报: 自然科学版, 2007, 27(1): 19-22. https://www.cnki.com.cn/Article/CJFDTOTAL-XAGL200701004.htmXiao Qing-yi, Hao Pei-wen, Xu Ou-ming, et al. New method for evaluating adhesion between asphalt and aggregate[J]. Journal of Chang an University: Natural Science Edition, 2007, 27(1): 19-22. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XAGL200701004.htm [13] Garboczi E J, Bentz D P. Analytical/numerical theory of diffusivity of concrete[J]. Advanced Cement Based Materials, 1998, 8(2): 77-88. [14] 陈忠达, 袁万杰, 高春海. 多级嵌挤密实级配设计方法研究[J]. 中国公路学报, 2006, 19(1): 32-37. doi: 10.3321/j.issn:1001-7372.2006.01.007Chen Zhong-da, Yuan Wan-jie, Gao Chun-hai. Research on design method of multilevel dense built-in gradation[J]. China Journal of Highway and Transport, 2006, 19(1): 32-37. (in Chinese) doi: 10.3321/j.issn:1001-7372.2006.01.007 [15] 田波, 侯芸, 杜二鹏, 等. 沥青混合料中骨架结构特征的评价[J]. 同济大学学报: 自然科学版, 2001, 29(5): 541-545. https://www.cnki.com.cn/Article/CJFDTOTAL-TJDZ200105009.htmTian Bo, Hou Yun, Du Er-peng, et al. Characteristic evaluation of coarse aggregate in hot mix of asphalt[J]. Journal of Tongji University: Natural Science, 2001, 29(5): 541-545. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TJDZ200105009.htm