-
摘要: 为研究金属螺旋弹簧的动态特性及动刚度对频率的响应, 利用有限元方法, 建立了弹簧有限元模型, 计算了弹簧的稳态响应, 分析了其幅频特性曲线, 并提出弹簧刚度的等效算法。计算结果表明: 弹簧的动刚度随着激振频率的增大总体趋势是增大的, 但是在共振频率处, 动刚度极小, 低于静刚度, 而在反共振频率处, 动刚度极大, 远高于静刚度; 两种算法的刚度-频率曲线几乎重合, 因此, 金属弹簧确实存在显著的动态特性, 采用多自由度系统等效弹簧系统是可行的。Abstract: In order to study the dynamic characteristics of metal helical spring and its dynamic stiffness response to driving frequency, a finite element model of the spring was set up by using FEM, its steady-state response was computed, its frequency-amplitude characteristic curve was analyzed, and an equivalent algorithm of its stiffness was proposed.Computation result shows that the dynamic stiffness of the spring increases with the increase of driving frequency in general tendency, it is minimal and smaller than the static stiffness of the spring corresponding to resonant frequency, however, it is maximal and greater than the static stiffness corresponding to anti-resonant frequency; the stiffness-frequency curves of finite element model and equivalent algorithm almost overlap, so the dynamic characteristic of the spring is remarkable, and the algorithm is feasible.
-
Key words:
- vehicle engineering /
- metal helical spring /
- dynamic stiffness /
- finite element method
-
表 1 弹簧参数
Table 1. Parameters of spring
参数 数值 参数 数值 簧丝直径d/mm 50 支承圈nZ 1.5 外径D2/mm 300 总圈数N0 6.5 内径D1/mm 200 自由高度H0/mm 540 中径D/mm 250 节距t/mm 102 有效圈数n 5 静刚度Ks/(N·m-1) 8.07×105 表 2 纵向固有模态
Table 2. Longitudinal natural modes
模态阶数 频率/Hz 振型描述 1 25.848 一阶纵向固有频率 2 75.860 二阶纵向固有频率 3 120.780 三阶纵向固有频率 -
[1] 郝建华, 曾京, 邬平波. 铁路车辆垂向减振与悬挂系统参数优化[J]. 交通运输工程学报, 2005, 5(4): 10-14. doi: 10.3321/j.issn:1671-1637.2005.04.003Hao Jian-hua, Zeng Jing, Wu Ping-bo. Vertical vibration isolation and suspension parameter opti mization of railway vehicle[J]. Journal of Traffic and Transportation Engineering, 2005, 5(4): 10-14. (in Chinese) doi: 10.3321/j.issn:1671-1637.2005.04.003 [2] 吕彭民, 和丽梅, 尤晋闽. 基于舒适性和轮胎动载的车辆悬架参数优化[J]. 中国公路学报, 2007, 20(1): 112-117. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL200701020.htmLu Peng-min, He Li-mei, You Jin-min. Optimization of vehicle suspension parameters based on comfort and tyre dynamicload[J]. China Journal of Highway and Transport, 2007, 20(1): 112-117. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL200701020.htm [3] 原亮明, 宫相太, 王渊, 等. 铁道车辆空气弹簧垂向动态特性分析方法的研究[J]. 中国铁道科学, 2004, 25(4): 37-41. doi: 10.3321/j.issn:1001-4632.2004.04.006Yuan Liang-ming, Gong Xiang-tai, Wang Yuan, et al. Studyon vertical dynamic characteristics analysis method for railway vehicle air spring[J]. China Railway Science, 2004, 25(4): 37-41. (in Chinese) doi: 10.3321/j.issn:1001-4632.2004.04.006 [4] 原亮明, 宫相太, 王渊, 等. 铁道车辆空气弹簧——可变节流阀垂向动态特性的研究[J]. 铁道学报, 2005, 27(1): 40-44. doi: 10.3321/j.issn:1001-8360.2005.01.009Yuan Liang-ming, Gong Xiang-tai, Wang Yuan, et al. Research on vertical dynamic character of air spring—variable throttle systemfor rail way vehicle[J]. Journal of the China Railway Society, 2005, 27(1): 40-44. (in Chinese) doi: 10.3321/j.issn:1001-8360.2005.01.009 [5] 孙向阳, 曾山. 基于频域分析的共振特性的仿真研究[J]. 武汉工业学院学报, 2004, 23(2): 35-37. doi: 10.3969/j.issn.1009-4881.2004.02.011Sun Xiang-yang, Zeng Shan. The simulation study of reso-nance characteristic in frequency domain[J]. Journal of Wuhan Polytechnic University, 2004, 23(2): 35-37. (in Chinese) doi: 10.3969/j.issn.1009-4881.2004.02.011 [6] Yildirim V. Expressions for predicting fundamental natural frequencies of non-cylindrical helical springs[J]. Journal of Sound and Vibration, 2002, 252(3): 479-491. doi: 10.1006/jsvi.2001.4005 [7] Becker L E, Chassie G G, Cleghorn W L. Onthe natural frequencies of helical compression springs[J]. International Journal of Mechanical Sciences, 2002, 44(4): 825-841. doi: 10.1016/S0020-7403(01)00096-0 [8] Lee J. Free vibration analysis of cylindrical helical springs bythe pseudospectral method[J]. Journal of Sound and Vibration, 2007, 302(1-2): 185-196. doi: 10.1016/j.jsv.2006.11.008 [9] 曾宪茹, 肖世德. 铁路车辆专用压缩螺旋圆弹簧的计算机辅助设计[J]. 机械, 2004, 31(增刊): 98-100. https://www.cnki.com.cn/Article/CJFDTOTAL-MECH2004S1042.htmZeng Xian-ru, Xiao Shi-de. CAD of cylindrical spiral spring for rolling-stock[J]. Machinery, 2004, 31(Sup): 98-100. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-MECH2004S1042.htm [10] Fakhreddine D, Mohamed T, Said A, et al. Finite element method for the stress analysis of isotropic cylindrical helical spring[J]. European Journal of Mechanics, 2005, 24(6): 1 068-1 078.